BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: Coronavirus

Mu Vs. Delta: Which is the Scarier SARS-CoV-2 Variant?

The Mu variant has been a term of interest in a lot of peoples conversations. This is due to the fact that it has been getting a lot of news coverage as one of the latest variants of the world wide virus SARS-CoV-2. It has been portrayed to be the next big virus ready to take over the world, but, does it have the legs to do so and how much more dangerous is it than other mutations such as the Delta variant?

Laboratoire de Physique de la Matière Condensée laboratoire PMC - 46940329992

The Mu variant first popped up on January 2021 in Columbia and has spread to about 39 countries since then. Mu is very similar to the original version of the SARS-CoV-2 virus. However, where it differs is at the two mutations E484K and K417N. These are what cause Mu to be seen as a variant of the original virus. The traditional anti-bodies that would normally be able to stop SARS-CoV-2 are seemingly ineffective against Mu leading the World Health Organization to classify it as a “Variant of Interest”. This classification means that it will continue to be monitored closely to derive the best possible plan on how to contain it. The mutations of Mu give it different properties such as mutation E484K, this mutation caused a drastic change in the structure of the original Covid-19 protein and thus made it so that it is able to by pass the human immune system easier. This is seen as a big problem because studies of how the anti-bodies effect SARS-CoV-2 conducted in US and UK compared to those conducted African countries have shown that African cases seem to be severely less effective against SARS-CoV-2. Researchers believe this is due to Africa being exposed to significantly more cases with the E484K mutation. As discussed in class this sequence of numbers and letters means that in the original amino acid sequence at spot 484 there was a Glutamic Acid amino acid (which is a negatively charged), and then once the mutation occurred it then became Lysine which is positively charged. This change in properties is what causes the protein to fold differently thus causing a severe changes as to how it behaves in humans. The Mu variant seems to have been able to disregard the anti-bodies and still effect the human body. However this seems to be the reach of its dangerous mutations because as of now scientist have no reason to believe that Mu is any more transmissible than the original virus which is a good sign.

The Delta variant has been an extremely worrisome mutation for some time now with the first case being noted back in October of 2020 believing to have originated in India. The Delta variant has been one that has taken over the world recently and it seems as though the former version of Covid-19 is a thing of the past and that Delta is the new pandemic. This is due to Delta’s interesting mutation P681R. The original amino acid at place 681 was Proline which has no charge, however after the mutation occurred it became Arginine which is negatively charges causing the amino acids to behalves differently with each other and the environment. This mutation is the cause of Delta’s incredibly rapid spread throughout the world. This ability to be globally spread in months is just one of the reasons why it has also taken the lives of so many as more people are getting Delta over the initial virus now.

Ultimately, it is clear which variant has been seen as the more dangerous by the media: Delta. However, while the Delta variant is scary in it’s own right, it just seems to be a faster spreading SARS-CoV-2. Meanwhile Mu has a way to almost be a completely different virus as it spreads just as fast as the original virus (it only took 4-5 months to completely shut down the world). It is also able to completely bypass the anti-bodies if you already had Covid-19 or have the vaccine. If this virus reaches levels of spread to the likes of Delta then scientist are going to have to create a new vaccine for Mu as it is simply to dangerous to ignore. Feel free to share how you feel about all of this and let me hear your take on the more menacing variant!

How the Healthcare Industry Disadvantages Minorities

Although our country is built on the principle that “all men are created equal,” this notion has yet to be completely true in modern America or our history. The disproportionate death rate from COVID-19 in Black Americans is a telltale sign of the inequities, or injustices, in place in the healthcare industry. While it’s easy to blame these inequities on higher obesity, diabetes, or hypertension rates in Black Americans, there is more to it than that.

These inequities are also very prevalent in prostate cancer mortality, as the numbers are far higher in Black men than white. This results from a multitude of factors, including that they “generally get fewer PSA screenings, are more likely to be diagnosed with later stage cancer, are less likely to have health insurance, have less access to high-quality care,” or perhaps even other factors, according to Daniel Spratt, M.D. These are all indications of structural inequality, a system of unfairness created by institutions, in our country, not just circumstantial or individual biases. 

Black and minority patients are likely to feel more comfortable with minority doctors, but unfortunately this isn’t always possible. For obvious reasons, this reduces implicit bias from the physicians. Aside from a harder time getting proper care, minorities also suffer from an unequal amount of expenses. According to a UMichigan team, “the last six months of life is $7,100 more expensive to the Medicare system for Black people, and $6,100 more expensive for Hispanics, compared with white people,” although more research must be done to determine exactly why this is. One of the root causes for these trends could be lack of nutrition. Even before the pandemic, many minority adults and children didn’t have access to nutritious foods, which plays a major role in health status. This also continues to be perpetuated by institutional racism and the vicious cycle of poverty in America. Unfortunately, many situations only worsened with the emergence of COVID-19. This is a very pressing issue that must be addressed sooner rather than later, in order to ensure the safety of many adults and children.

As we have learned in bio class, the use of masks to prevent the spread of COVID-19 is absolutely essential. Especially in urban or tightly packed communities, where COVID-19 can easily spread from person to person, masks are needed more than ever. Additionally, these communities often have high amounts of minorities, worsening their odds of becoming seriously ill. Fortunately, with the development of safe and effective vaccines, there is finally a light at the end of the tunnel. Minority communities desperately need vaccines in order to prevent any more lives lost, and luckily distribution is gradually picking up. Although this has been a tragic year, I hope America will learn from this situation, becoming more prepared for future unpredictable scenarios and fixing the inequities prevalent in our country.

What face mask should you go buy?

When you are leaving your house, how do you decide what mask to wear that day? Have you tried different kinds? Masks have become a new part of our daily life. We all have to wear masks in social situations or anywhere out in public in order to prevent ourselves and others from contracting coronavirus. In the past few months, there have been many different types of masks that are being sold. Some even have super cool designs, and some are more comfortable than others. So, when you are picking a mask, do you stop and think about which one is the most effective at doing its job of protecting you?

Overview on Masks and the protection

The article from Healthline explores the variety of masks, and discusses the usefulness. In general, masks are an essential preventative measure to take as it reduces the risk of transmission of Covid-19, along with the other protective measures, such as distancing and proper hygiene. The purpose of masks are to protect oneself from the respiratory droplets from traveling into the air. It is especially important to protect yourself in public because around 80% of the coronavirus transmission has been rooted from asymptomatic carriers. An asymptomatic carrier is someone who has contracted the Coronavirus, but has no symptoms of the virus. However, asymptomatic people can still spread the virus.  By wearing a mask, one is able to prevent the airborne transmission of the coronavirus pathogens through our bodies primary defenses such as the mouth, nose and the eyes. Since the coronavirus pathogens are able to get past the barrier defenses if you do not wear a mask and take other preventative measures, this triggers innate cellular defenses, which lead to the inflammatory response in our body, such as fevers, colds and more. Inner surface is lined with tiny hairs cilia or mucus membranes which trap pathogens and can be removed by sneezing or coughing or swallowed to be broken down by stomach acids.

Surgical Masks and Valve Masks

Surgical masks are disposable, single use masks that cover your mouth and nose. They are made out of a breathable synthetic fabric. There is not a airtight seal around the area it covers, and there has been a large range on how the surgical masks filter pathogens. Respirators have intense filters that filter the pathogens in the air. These are also airtight, unlike the surgical masks. Some of the respirator masks have valves which lets some exhaled air to escape. The downside to this is that it does not protect others from pathogens exhaled through the valves. This is because the valves in the mask allow respiratory droplets from the person wearing the mask out into the air and get to other people.

N95 Respirator Masks

N95 masks can protect one from particles as small as 0.3 microns. N95 masks are extremely effective in preventing airborne particles from entering through the areas of the nose and mouth. The name “N95” comes from the fact that the respirator blocks 95% of small and large particles out. The ‘N’ is the respirator rating class. The ‘N’ stands for “non oil”, so basically no oil based particulates are present. The filtering and protection is much higher than a surgical or a cloth mask.

Homemade and store bought Cloth Masks

Masks that many people make at home are considered to be the least effective as the fabric is less secure and allows for small droplets to enter inside the mask. Also, many of these cloth masks have gaps near the nose, jaw or mouth area that also be areas where the droplets can be inhaled by the person wearing the mask. If you do wear a mask made at home, use 100% cotton fabric, which is the most effective material for cloth masks. Now, most stores are selling all different kinds of cloth masks. In general, all cloth masks vary with effectiveness as they are constructed with different fits, materials, and layers which all effect filtration. But, overall, store bought masks have had better securely fitting masks, which is very important in wearing a face mask for protection to properly cover the nose and mouth. If you are buying a cloth mask from a store, look for cloth masks that come with a nose wire and a filter insert which upgrade the masks. Overall though, whether it is homemade or store bought, surgical and n95 masks are more effective than both in protecting the wearer.

Overall, a key factor in any mask usage is how you wear the mask. Have you caught yourself accidentally letting the mask slip off your nose, and not doing anything about it? The proper usage is extremely important in having the masks be effective and prevent ourselves from getting the virus. We are in a very critical time, and the least we can all do is wear a mask to protect ourselves, others and lower the spread of the virus. We can all help reduce transmission! Be sure to wear a mask and be safe!

A New and Horrifying Effect of COVID-19

The COVID-19 virus has been terrorizing innocent people from all corners of the world. The symptoms and effects of the virus have proven to be devastating especially for young children and the elderly. If that wasn’t bad enough, scientists have recently discovered that COVID-19 is linked to erectile dysfunction.

Read More

Testing For The Virus That Changed Our Lives

SARS-CoV-2, the virus that causes the COVID-19 disease, has changed our daily lives completely. Doctors and researchers have been working endlessly to figure out how to put a stop to its spread and get us back to our normal ways of life. Getting tested for COVID-19 is an extremely helpful way to further our knowledge of the virus and prevent it from spreading.

In order to prevent the spread of the virus, we must be able to track it. Researchers have found a way to test for COVID-19 through diagnostic tests. The tests are performed by healthcare personnels at clinics or doctors’ offices, with specific kits. The head is tilted back at a 70 degree angle and a swab is inserted inside the nostril, sometimes both, to collect the cells from the back of the nose. The swab is inserted to absorb the cells and then put into a sterile tube to be sent to a laboratory. There, a PCR test is performed and the cells are examined.

You might ask, “how does the test work?” In simple terms, the virus’ RNA is made up of thousands of nucleotides. Researchers have developed a PCR test, in which it looks for the virus’ DNA, within a person’s cells. Since the virus does not have DNA but rather has RNA, a RT-PCR test is needed to test for the disease. The RT-PCR test consists of various “reverse transcription polymerase chain reactions” where the RNA of the virus is transcribed into “complimentary DNA” that is used in the PCR test. The nucleic acids of a person’s cells are taken from the swab they were tested with, and replicated millions of times to be examined. The DNA is processed by a PCR instrument to see if the genes of the virus is within the human cell. 

SARS-CoV-2 has a surface made up of spike proteins. The spike proteins attach to a receptor on the surface of a human cell and fuses through the membrane. This is how it passes through its first line of defenses and enters respiratory epithelial cells lined on the respiratory tract, making it a respiratory virus. Once the virus is inside of the cell, it releases its RNA and is encoded, thus replicating itself. From there, the dendritic cells work to get a defense reaction from the immune system. 

When the pandemic had recently started, there were very limited tests available. The CDC, Center for Disease Control and Prevention, urged that only people with symptoms or people who have had high exposure to a person who tested positive be tested. Symptoms include a dry cough, fever, and shortness of breath. It was later found that people were testing positive for COVID-19 who had no symptoms, or had high exposure to it. This pushed researchers to develop more tests due to the fact that the virus was spread easier than they initially thought. Now there have been millions of tests shipped out, and more people are able to get tested. This is prevents the virus from spreading through people who do not know they have it. It also allows researchers to get a more accurate number of positive cases. The development of test kits and PCR testing has been extremely successful, even though there have been some inaccurate results. 

When do you think we will be able to return to our normal lives?

Our Next Steps To Defeat Covid-19.

Introduction

Whether it is protection from an angry bear, a criminal on the loose, the simple flu, or for safe sex, the measures we take to ensure our safety is one of the most important steps to continue to stay healthy and safe. We must continue to educate ourselves on what actions we must take in order to keep ourselves and the people around us as safe as possible.

Recently, our society has had a lot of controversy around products like masks and their effectiveness. Although many of our methods may not guarantee complete safety, we must attempt to reduce the amount of spread of serious viruses like SARS-CoV-2.

To quickly clarify, SARS-CoV-2 is the virus that invades our bodies. When SARS-CoV-2 is able to bypass our bodies’ immune system functions and infect cells in our system, our bodies contract the disease Covid-19. If further information is desired, please refer to this study on SARS-CoV-2 and Covid-19 conducted by the US National Library of Medicine National Institutes of Health.

As we approach a whole year with the presence of Covid-19 in the United States of America, we must stop to reflect on our actions and see what we can do to prevent the virus from wreaking more havoc on our society. One of the most important factors for Covid-19’s ability to spread as much as it had, was the lack of proper protection techniques used by citizens of the United States of America.

Firstly, it is very important to understand how SARS-CoV-2 is able to transfer from person to person so easily. According to the CDC, The most common way for SARS-CoV-2 to spread is through people inhaling respiratory droplets, released through other people’s coughing, sneezing, talking, etc. into their own nose and mouth. Although much rarer, SARS-CoV-2 can sometimes be spread through airborne transmission and contact with contaminated surfaces.

Since breathing is a necessity to continue living, we obviously can’t perfectly avoid inhaling these respiratory droplets, but in what ways can we try to reduce the damage of possible Covid-19 cases in the United States of America…

Forms of Protection

According to the CDC, we can take very specific steps in order to reduce the spread of Covid-19.

To further elaborate on a few of these methods, we as a society must educate ourselves on the best and most efficient way to carry out these actions. One main example at the moment is mask usage in the United States of America. Despite constantly being told, I often see many citizens wearing their masks in ways that are strongly discouraged: some under the nose, some dangling from their ears, and some not on at all. Not only does this put their own bodies at risk of contracting Covid-19, but it also risks the health of others as well.

According to the articleStill Confused About Masks? Here’s the Science Behind How Face Masks Prevent Coronavirus” by Nina Bai, a study conducted by health affairs, compared the Covid-19 growth rate before and after a mask mandate. Nina  states that “the first five days after a mandate, the daily growth rate slowed by 0.9 percentage-points compared to the five days prior to the mandate; at three weeks, the daily growth rate had slowed by 2 percentage-points.” Another study conducted by Christopher Leffler, Edsel Ing and many more professionals also found that out of the 198 countries that they had observed the Covid-19 death rate of “those with cultural norms or government policies favoring mask-wearing had lower death rates.”  Through studies, we can observe the effectiveness of such resources and use these materials such as masks to the best of our abilities to help each other stay safe.

If you are in need of instruction on how to properly use a mask and other small important pieces of information. Please refer to the CDC’s article “How to Select, Wear, and Clean Your Mask”

Another term that many have learned this year, is the term “Social Distancing.” Although staying 6 feet apart from one another like the CDC has told us, it becomes very difficult for every day citizens to abide to this rule as we have a natural tendency to gravitate towards our peers, family and other people in our communities. In order to reduce spreading the virus to other people we must stay socially-distant from others to allow people to live their lives much more comfortably, especially considering that most cases of SARS-CoV-2 transfer are caused through inhaling respiratory droplets.

Another luxury many people don’t use properly is the sinks that are in our homes and bathrooms. I’ve seen way too many people use hand sanitizer instead of going to wash their hands for the recommended 20 seconds with soap and water. For many reasons, this practice can be extremely harmful if someone is trying to prevent the spread of SARS-CoV-2. According to the CDC, there are many cases where using regular hand sanitizer won’t be as efficient as a simple washing of hands with soap and water. For example, hand sanitizer is not as efficient on greasy and dirty hands: hands after handling food, playing sports, going fishing and many other activities that may lead to dirty hands. In cases as such, the CDC recommends using soap and water for 20 seconds. However, we must truly wash our hands by properly scrubbing our hands and not simply allow the water from the sink to run through our fingers and palms. The friction caused by scrubbing allows for the lifting of dirt, grease and microbes on your skin. Microbes are also extremely present under your nails which is why your parents always tell you to make sure to get your nails when you wash your hands. Without properly cleaning our hands and other parts of our bodies, we may accidentally bring harmful substances towards our face, where the virus may be able to easily enter our bodies. By cleaning our hands thoroughly and carefully, we significantly reduce the chances of spreading the virus to others and ourselves.

Biological Implication

The reason the CDC places so much emphasis on thoroughly washing your hands with soap and water, is so that we can make sure to keep our hands clean from any harmful substances. If someone were to only wash their hands with water, they wouldn’t be able to wash off all the non polar substances like grease and oil off of their hands. For this reason, we use soap to and water rather than only water. Due to water’s polar properties, it can only bond with other polar molecules. When one adds soap into their cleansing routine, there are two new parts being tossed into the mix. The hydrophilic heads from the soap attach to the water molecules and the hydrophobic tails of the molecule bond with the non polar substances such as grease and oil. The water then continues to carry the soap and harmful substances away from our hands as other water molecules pull them down with them as gravity takes its course. Soap, being made of lipids, shows versatility as it’s able to bond with both polar and non polar molecules and allows us to fully wash our hands with its polar and non polar qualities.

Conclusion

With proper masks, socially-distant people, clean hands and many other precautions we can make sure that the spread growth is reduced way more than it previously was. Scientists are still trying to figure out all the details themselves. They’re human beings and they’re bound to make mistakes as well, so we must be understanding and flexible when new studies and information prove claims that could help us reduce the spread of SARS-CoV-2 and Covid-19 even more. In these troubling times we must look out for each other and be strong yet malleable as we face hardships that many haven’t ever experienced before.

 

 

 

How Could the Coronavirus Pandemic Harm the Environment?

In light of the chaos of the coronavirus pandemic, the worldwide pandemic caused by SARS-CoV-2, and all of its negative effects, people have been searching for some silver lining to the whole mess. I am someone who is passionate about saving the environment, and I was thrilled to hear about positive environmental outcomes that the pandemic caused. Unfortunately, while rumors have circled around that the environment has benefitted from quarantine, experts are now saying the opposite could soon be true. It is hard to tell what the future will hold, but signs point to a risk of a future with more traffic, pollution, and resulting climate change. 

During April, the prime of stay-at-home orders and when most people were on full lockdown, daily global carbon emissions were down 17% from 2019. However, by June they were only down about 5% from 2019, and at this point many people were still not going about daily life like “normal.” Corinne Le Quéré, professor of climate change at the University of East Anglia in Britain says that “as soon as the restrictions are released, we go right back to where we were.” A somewhat similar situation during the 2007-2008 financial crisis provides some insight into the future. At the time, emissions dropped, but later rose right back up. 

China exhibits an example of a quickly diminished hope of change in their air quality. As they were the first country to shut down, they had a dramatic shift in air quality due to slowed manufacturing and transportation. However, they were also one of the first countries to begin reopening, and this change did not last long. Factories pushed to make up for lost time and the pollution consequently returned, even growing to higher levels than before the pandemic in certain places. Traffic levels have also apparently bounced back to the same magnitude as before the pandemic, despite the fact that there are still people who have not yet returned to regular life and are unaccounted for in this statistic. Furthermore, industries in fossil fuels, plastics, airlines, automobiles, etc. have been negatively impacted by the virus and now are searching for any way they can to make a profit. Governments including the US have complied with their pleas for cash, regulatory rollbacks, and other “special favors.” As a result, “there’s a serious risk that polluters could emerge from this crisis bolder and potentially more profitable than ever,” says Lukas Ross, a senior policy analyst at Friends of the Earth. 

Another devastating example of negative environmental impacts can be seen in Brazil’s Amazon rainforest. During the pandemic illegal loggers, people who harvest, transport, process, buy, or sell timber in violation of national or subnational laws, took advantage of the “smokescreen” provided by the pandemic and caused destruction in the rainforest that surpassed amounts in previous years. According to satellite data, 64% more land was cleared in April 2020 than in April 2019, despite 2019 being a record year for deforestation for the past decade. This is significant because the Amazon rainforest plays a vital role in regulating the world’s oxygen and carbon cycles, producing roughly six percent of the world’s oxygen. As we know from biology class, oxygen is essential as it is one of the main building blocks of life. Our cells need oxygen to produce various proteins, and ultimately more cells. Oxygen is also crucial in many of our body systems. Without oxygen, the creation of carbohydrates, nucleic acids, and lipids would be impossible. The Amazon, which produces a significant amount of oxygen, is being destroyed more and more every year. The rainforest is also considered a carbon sink, meaning it absorbs large amounts of carbon dioxide from the atmosphere, lowering CO2 concentrations. Its function as a carbon sink helps combat CO2 levels in the atmosphere and climate change.

It is unknown what else is in store for the environment in the remainder of the pandemic and in coming years, but we can only hope for the best.

“Covid Winter” is Coming: The Power of Humidity in our Return to Normal

As “Covid Winter” approaches, especially in states with seasonal changes such as New York, it calls into question what this will mean for the virus in the coming months. When thinking about when the pandemic will end, temperature, humidity, and seasonal shifts are large factors which work against stopping the spread of the virus. Externally, as the air outside becomes colder, it is able to hold less water vapor, which decreases humidity. HVAC (heating, ventilation, and air conditioning) units inside office buildings work by taking in outside air and heating it to channel through the indoor space, which similarly dries the air out. 

Why is humidity important in preventing the spread of the virus on a biological level? In an aerosol study conducted at Virginia Tech, the researches demonstrated that as humidity levels decrease, the particles of moisture released from actions such as talking, coughing, sneezing become smaller. This becomes a problem because the dry air causes the water in the molecules to evaporate faster, therefore becoming even smaller and staying in the surrounding air for a longer period of time. Any droplets can then travel around the closed, indoor space further. Their minuscule size allows them to be inhaled and move deeper into the lungs, where, as we learned in the video we watched in class, a spike on the virus will insert into a receptor molecule on a healthy cell membrane, allowing it to infect the healthy lung cell, leading to a susceptible person contracting COVID-19 and being able the virus further.

Other coronaviruses, like the common cold, influenza, and rhinoviruses, have exhibited similar spreading patterns dictated by the seasons, demonstrated by flu season occurring in the winter, calming down in summer, and coming back again in fall. Scientists believe COVID-19 could do the same, and are currently conducting research and gathering data to see the correlation between the virus and humidity levels. Stephanie Taylor, a physician and fellow at Har-

An example of how the virus remains in the air after released through talking, singing, etc

vard Medical School, is part of a joint study with the Massachusetts Institute of Technology that “found that the most powerful correlation between national numbers of daily new coronavirus cases and daily Covid-19 deaths was indoor relative humidity.” In reflecting upon their findings, she says that humidity “is so powerful, it’s crazy.” 

The only way to know exactly how the coming winter months will affect the spread of the virus is through time and observation, but it is interesting to look at the biological processes and movement of particles in relation to humidity to understand how the virus may have an increased spread as it becomes colder. I also feel this background helps us be able to make intelligent, informed decisions about the risk of social gatherings as it becomes harder to stay outdoors and the weather changes. What do you think is lying ahead in “Covid Winter?” Do you think we will inevitably have to wait until the humidity changes in spring to declare an official end to the pandemic? 

 

Protecting Ourselves Against COVID-19

How does COVID-19 spread?

According to this article by the CDC, there are two main ways the coronavirus spreads:

  • The inhalation/exchange of respiratory emissions from:
    • Coughing/Sneezing
    • Talking/Singing
    • Breathing
  • Touching a surface with the virus on it and (without washing hands) touching:
    • Eyes
    • Nose
    • Mouth

 

Preventing the spread of COVID-19

An article (source article) from Harvard Medical School explains everything you need to know about preventing the spread of the virus. Below is a summary of how to contribute to the prevention of the spread of the virus.

 

Protecting yourself and others:

In order to protect yourself and others from the coronavirus, you should avoid those who are infected and others if you are infected, wash your hands frequently with soap and water, avoid touching your eyes, nose, and mouth with unwashed hands, and disinfect objects that are frequently touched daily. You should also minimize travel and time spent in crowds/close quarters.

 

Washing your hands:

Whenever your hands are dirty (ex: after using the bathroom) or are going to be near your face (ex: before eating a meal), wash them with soap and water for at least 20 seconds. If you are unable to wash your hands during these times, sanitize with alcohol-based hand sanitizer. A guide for washing hands, created by the CDC, explains how to properly wash your hands in five simple steps:

  1. Run your hands under clean water until sufficiently wet, then acquire soap
  2. Rub the soap around the whole surface of your hand, between every finger, underneath every nail, etc.
  3. Keep doing this for at least 20 seconds
  4. Rinse off all the soap under clean water
  5. Dry your hands on a clean drying surface or let them air dry

 

Social Distancing:

Social distancing is when in social settings, people maintain a distance of at least 6 feet between each person. This is crucial for at least slowing down the rate of infected people, providing hospitals more time and resources to take care of infected people without being overwhelmed by a large number of patients. It’s important to note that just social distancing is not enough to prevent the spread of the virus, as respiratory emissions may linger and travel more than 6 feet when airborne. Make sure to also wear a mask and avoid the indoors and areas without air circulation while with other people.

 

Essential resources:

When grocery shopping, make sure to buy a lot of nonperishable goods to keep in case of an emergency. Make sure to wear a mask when going out, as masks prevent the spread of respiratory emissions and help prevent hands from touching faces. Wipe down surfaces such as carts and baskets before using and make sure to wash your hands after using. If you’re part of an increased risk group, try to avoid going out as much as possible.

 

Minimally useful measures:

Some individuals decide to take extra precautionary measures, but they are unnecessary for the most part. Some of these include wearing gloves and quarantining mail. In situations like these, just make sure to wash your hands after handling potentially infected objects, other measures do not help significantly.

 

Masks:

Wear a mask! The most common way the virus spreads is, as stated before, through respiratory emissions. Wearing a mask prevents these emissions from traveling throughout the environment. Even asymptomatic people may carry/spread the virus, so it is important to wear a mask no matter what. Masks should fit tightly and be worn properly, completely covering the mouth and nose. Masks are not supposed to be an alternative to the other methods of prevention but should be used in addition to the other methods.

 

Infants/Toddlers:

There is an alarming amount of young children put at risk from improper/a lack of safety measures. This article from kidshealth.org explains how to properly protect children under the age of 2 from COVID-19. First of all, babies should not wear masks. This is because since their airways are extremely small, they will have a hard time breathing and may suffocate in a mask. They may also touch their face more frequently in attempts to remove the mask, increasing their risk of infection. Since they can’t wear masks, it is important to avoid going out in public with them if possible. If unavoidable, make sure to wash or sanitize your hands before handling them and put them in a stroller with a covering.

 

An analogy based on cells and membranes:

A simple way to think about it is as if the human body were a cell. The skin is like a cell membrane and the eyes, nose, and mouth are like channels in the membrane. Wearing a mask is like closing the channels in order to keep substances out. Being in a large group of people is similar to a cell in a hypotonic solution, making it more likely for the virus to “diffuse” into your body. Socially distancing is slightly similar to a cell in a hypertonic solution, for this makes it less likely for the virus to flow into the body. To sum up, just make sure to make smart decisions, wash your hands, maintain social distancing, and wear a mask. Following these guidelines will help us protect each other until the virus is no more.

So we beat SARS and MERS… Why haven’t we beat COVID-19?

Many people, especially those who were alive during the SARS and MERS outbreak, may be wondering why we haven’t beat the Coronavirus yet if we beat the SARS and MERS outbreaks, two very similar viruses to COVID-19 or Sars-CoV2. This is a question many people have been facing everyday as the Coronavirus disease has caused a shift in the entire globe’s day to day life unlike SARS and MERS. 

SARS, MERS, and COVID-19 are all part of the coronavirus family. “Coronaviruses are a large family of enveloped RNA viruses” that can be found in a variety of bat and bird species. While this makes the three viruses similar, they all have specific differences causing unique results in terms of outbreaks and how the specific viruses have spread. What is so powerful or different about the coronavirus causing COVID? 

First of all, let’s talk about how viruses hijack our bodies. Viruses are microscopic parasites, much smaller than bacteria, that contain key elements that make up all living things such as nucleic acids and DNA or RNA, but are unable to replicate and access this information encoded in their nucleic acids, meaning they cannot self replicate. In order to reproduce, they rely on the genetic material of host cells (our own cells). As we talked about in class, viruses are able to bind to our cell surface receptors and trick our cells to “let them in”. The viruses are then able to hijack our cells by releasing their genomes, or that information they couldn’t previously access, resulting in our cell making millions of copies of that genome to spread throughout the body in order to infect other cells and / or other human hosts. This is how all three of the coronaviruses hijacked our bodies and communities. Let’s hear what happened once this step occured.

SARS stands for Severe Acute Respiratory Syndrome. The SARS outbreak began in the Guangdong province in China in 2002. The coronavirus that caused SARS, called SARS-CoV, was likely spread to humans, in the China wet markets, from civets or other animals who acquired the virus from horseshoe bats. The World Health Organization (WHO) issued a global alert after identifying an atypical pneumonia spreading amongst hospital staff and later names the virus SARS based on the symptoms people began to express. The epidemic was controlled on July 5th 2003 and only four cases have been reported since, 3 of which being in a lab setting dealing with the specific coronavirus. The reason why SARS was able to be contained so quickly was due to the fact that one could only spread the virus if he/she had symptoms and if one expressed symptoms it was easy to self isolate, therefore not spreading the virus to others. In addition, SARS has a fatality rate of 9.6% meaning a good number of people who contracted SARS were likely to pass on and therefore not pass on the virus to others. 

MERS stands for Middle Eastern Respiratory Syndrome. As we learned in class, viruses are no longer named by their place of origin, but this was not the case in 2012 during the outbreak of MERS. Similar to SARS, MERS is a zoonotic virus, meaning MERS was passed from an animal, in this case a camel who contracted the virus from bat once again, to humans in Saudi Arabia. Although 27 countries have reported cases of MERS since 2012, transmission among people is rare and MERS has a fatality rate of 34.3%, making it even more deadly than SARS and therefore making it even harder to spread. 

The first case of COVID-19 or SARS-CoV-2 was reported in Wuhan China in December 2019. By the end of January 2020 the WHO had declared a public health emergency of international concern and by the beginning of February the WHO had declared a pandemic. So what makes the coronavirus disease so much worse than the other ones? How did COVID-19 spread so quickly and to the entire globe? And why are our daily lives changed forever or at least until we can get a handle on the virus?

First of all, the COVID-19 causing coronavirus SARS-CoV-2 is very similar to SARS-CoV, but with very unique and important differences. What we have all learned about SARS-CoV-2 is that you don’t need to be experiencing symptoms to transmit the virus. This is very different from SARS-CoV where you needed to have symptoms in order to transmit the virus. Also, while the transmission rates are lower for MERS and SARS because the fatality rates are higher, in the case of COVID-19, the fatality rate is approximately 1-3%, meaning more people are surviving COVID-19 making it easier for this virus to survive and pass on to other people that it has yet to infect. In addition, as we talked about in class, we have evidence that “viruses can naturally mutate to mimic host biology so as to ensure successful viral propagation” and as a result “a host of high frequency mutations have resulted in a least 5 differentiated SARS-CoV-2 strains to date” making it even harder to develop a successful vaccine to target and eliminate the coronavirus disease.   

So, will we ever be able to put a stop to the spread of the coronavirus disease and therefore the pandemic? The answer is yes, but we first need to figure out how to stop the spread of the virus. The truth about COVID-19 is that unfortunately, as stated above, it is much easier to transmit than SARS and MERS, and COVID-19 has been able to get on planes and travel the world unlike the previous coronaviruses. While it is easier to transmit it is also more survivable than the other coronaviruses that have impacted our communities thus far.

Intermediate Host of COVID-19 Found to be Pangolins

COVID-19 had intermediate animal hosts before beginning to infect humans. It is not uncommon for viruses and illnesses to have animal hosts that have the ability to transmit it to other organisms, one such example being mosquitoes and various illnesses such as malaria and the West Nile virus. It has been proven that bats are carrier of SARS-CoV-2, but scientists have been trying to discover how exactly it got from bats to humans. This knowledge matters because understanding where the virus originated and how it came to infect humans could prove crucial to future treatment and control.

It was originally suggested that snakes were the intermediate host due to a genome study; however, it had a lot of scientific criticism for a few reasons, one such being the fact that the coronavirus has only been known to infect mammals and birds. Meanwhile, another unrelated study comparing the spike proteins to that of HIV-1, discovered a few unexpected similarities. Due to the rise of conspiracy theories and rumors, a scientist by the name of Yang Zhang, along with some colleagues, decided to conduct a more in-depth study on SARS-CoV-2 sequences.

Yang Zhang and his colleagues uncovered the error in the analysis that claimed snakes were the intermediate host. Additionally, they analyzed and compared DNA and protein sequences from pangolin tissues in order to try to find those similar to SARS-CoV-2. They were able to identify protein sequences that were 91% identical to those found in the human virus’ proteins. The spike protein found in pangolins only had 5 differences in the amino acids as compared to the 19 differences in the bat viral proteins which is further evidence that pangolins are the intermediate host. However, researchers say that it is possible for other intermediate hosts to exist.

A pangolin, now suspected to be an intermediate host of the coronavirus

So how does an illness transfer from animals to humans? One belief is that rapid mutation is the main factor that allows viruses to adapt to overcome a new hosts barriers and immunological defenses. Another proposed theory is host similarity as explained by Gary McCracken, a professor at the University of Tennessee. They tested this theory by analyzing hundreds of rabies viruses in various species of bats. They found that the more genetically similar species of bats had these cross-species viruses.

As more tests have been conducted, it has been found that some animals, other than bats and pangolins, are also able to be infected with the coronavirus. João Rodriguez from Stanford University and some colleagues used computers to simulate and investigate how the spike protein interacts with different animal cells ACE2 receptors. The better the viral “key” fit into the receptor “lock”, the more susceptible that species was to SARS-CoV-2. Therefore, by applying this knowledge (as well as McCracken’s theory) to other situations, it would make sense that humans could be infected by a cross-species virus, particularly from other mammals.

This connects to what we learned in class about receptors and cell signaling. ACE2 receptors are found on cells throughout the body, most notably in this case, in the lungs. ACE2 receptors help regulate blood pressure, wound healing, and inflammation. Once a message (a signaling molecule or such) is received by the receptor, cell signaling moves into the next stage of transduction which ultimately produces a response. Therefore when something (in this case COVID-19) interferes, the proper signaling becomes changed or altered leading to the symptoms we have come to recognize as COVID-19.

Can your common cold help you beat vicious COVID-19?

Season colds are quite common, and while they are inconvenient and make us feel icky, they may be our advantage for our battle with COVID-19. 

To start off, when reading this article, I noticed that the author used the term “coronavirus” more casually. He referred to a “coronavirus” as a common cold, which of course left me confused. So I dug a little deeper…

Here’s a fun fact that I learned from this:

Many of us having been thinking that COVID-19 is the same as what we call the “coronavirus.” After reading an article differentiating the difference between the terms, I found that the term coronavirus is actually the broad term to describe a whole range of viruses. SARS-CoV-2 is the specific virus that causes only COVID-19 and is causes what doctors call a respiratory tract infection.

Basic biology tells us that while there are many cells that make up our body, they are all interconnected. A pathogen, like the SARS-CoV-2 virus, is an enemy to the cell. We learned about how things enter the cell in biology: the pathogen enters the cell, travels through the cytoplasm, and enters the nucleus. Because the virus has genes, it is able to rapidly produce copies of itself to infect the other cells. And of course, we know how scary these infected cells are when they start spreading to the lives around us given our situation with a global pandemic.

What we now know is that the SARS-CoV-2 virus, our “bad guy,” can actually induce memory B cells. These memory B cells survive for quite a long time; they are important in identifying pathogens, and creating antibodies to destroy such pathogens. So when we got sick during the winter last year, chances are these memory B cells fought them off. The key part of the memory B cell in our fight against COVID-19 is the cell’s ability to remember the antibodies it created from past illness for the future.

What does this mean?

The belief is that anyone infected by COVID-19 already has the memory B cells from past common colds to fight the virus off.  Taking a further step, it is believed that since everyone already has the memory B cells, anyone who has had COVID-19 in the past is unlikely to get it a second time. If the SARS-CoV-2 virus were to enter your body a second time (which is likely considering the virus has not gone away and is literally all around us), our bodies would be prepared with former knowledge of the antibodies used to fight and win this time.

A study performed at the University of Rochester Medical Center is the first to demonstrate how this may be so.

Mark Sangters, Ph.D., is a research professor of Microbiology and Immunology at URMC; he has backed up his findings by comparing different blood samples. When looking at 26 blood samples of recovering moderate COVID- 19 patients (people who have had it for their first time now), it seems that many of them had a pre-existing pool of memory B cells that could recognize the SARS-CoV-2 virus and rapidly produce antibodies to destroy it. He also studied 21 blood samples of healthy donors, collected years before COVID-10 existed. What he found was that these B cells and antibodies were also already present.

When we are sick with a common cold, our antibodies are created by memory B cells to attack the Spike protein. This protein is what helps viruses infect our cells. What Sangters noticed, is that although each Spike protein is different for each illness, the S2 portion of the Spike protein is the same throughout all sickness. Our antigens can not differentiate the parts of the S2 subunit, so they attack the Spike protein regardless. This was his final piece in his conclusion that our common colds that caused our memory B cells to make antibodies, could be used to fight against COVID-19.

The Long Road Ahead:

My concern with this article is that this is the biggest issue we face with COVID-19 is patient outcome. As of right now, there is no way to fully prevent everyone from COVID-19 because it is still all around us. The issue the world is facing, is how to treat those who have already contracted the virus. This information just simply is not enough to help. How will these memory B cells help those who are currently sick? The answer: Scientists are unsure. There is still the uncertainty of the future vaccine and study of these memory B cells for a possibility of milder symptoms or shorter length of illness from COVID-19.

 

Despite all of this concern, this is still a step in the right direction. Any information about this terrorizing virus is still helpful given how little we know about COVID-19. If we were to expand more on this information, we could save the lives of those around the world!

 

 

Pneumonia Outbreak in China: What You Should Know.

Weeks before the starting of 2020, a mysterious case of pneumonia seemingly caused by a contagious virus broke in Wuhan, China. The outbreak occurred in a local fish market which sold the meat of various exotic animals. The fascinating thing about this strange case is that scientists were unable to link it to previously known about pathogens such as SARS, MERS, or influenza. The true culprit of the spreading infection remained a mystery until scientists were able to analyze the genetic code of what they believed was the virus causing the panic.

A New Coronavirus

On January 10th the DNA Genome of the virus was recorded and scientists were finally able to identify the virus as a pathogen known as a “coronavirus“. Coronaviruses are fairly common and spread all types of illnesses from the common cold to severe acute respiratory syndrome or SARS. China and the world at large have actually gotten pretty familiar with handling these types of diseases as a global outbreak of SARS that originated in China occurred in 2003, barely a decade before the emergence of this new coronavirus. Thanks to this SARS outbreak, which infected 8,000 people and killed nearly 800, China has since had a very cautionary culture when it comes to medical issues. It is not uncommon to see people wearing medical masks regularly in public in order to prevent contamination in the highly populated areas of China. One can assume that this culture in China has helped with the current outbreak’s speedy treatment.

Effects and Outcomes

As a result of the spreading of the virus in the seafood supermarket, 59 patients were brought to the hospital, seven of which were in critical condition. It is known that coronaviruses all come from animal to human transmission so it is no surprise that the virus would appear so rapidly in an area where many humans interact with many animals. Since the outbreak, this market has been closed as of January 1st to few’s surprise. However, it is sad to say that the virus has claimed the life of a 61 year old man how seemingly was weak from many other ailments from his old age. While the newfound coronavirus has been proven to be deadly, many medical professionals and The WHO (World Health Organization) say there should be no cause for great concern as the outbreak has seemingly been contained since late December and there are no true prospects of it becoming a world like epidemic like SARS in 2003. Nonetheless, this recent case of pathological disease spreading serves as a reminder of the deadly forces we must all be careful of every day.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar