BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: Coronavirus (Page 1 of 2)

From Individual to Environmental: COVID-19 Antigen Testing Expands

Until recently, testing for COVID-19 has focused on the individual rather than on the environment. However, newly introduced technology promises to expand the scope of COVID-19 detection. Researchers at Washington University in St. Louis have developed an apparatus to detect the presence of the covert virus in SARS-CoV-2 without backgroundenvironmental settings. Previous attempts at this technology have been limited by the volume of air tested. Without adequate air quantity, the sensitivity of the technology is negatively impacted. The current system, however, is capable of concentrating up to 1000 m³ of air per minute, compared to the two to eight cubic meters assessed in previous attempts. The result is a system that increases viral detection sensitivity while maintaining specificity.

The newly introduced apparatus functions by using centrifugal force to approximate viral particles to a liquid matrix adherent to the wall of the test chamber. Within the matrix are found nanobodies, bioengineered antibody fragments derived from llama antibodies. As we discussed in class, the human immune system is composed of humoral and self-mediated factors. Antibodies fall into the humoral category. While human antibodies consist of a light chain and a heavy chain, llama antibodies are composed of two heavy chains. By isolating heavy chain llama antibody fragments sensitized to the COVID-19 spike protein and then splicing multiple sensitized heavy chains together, researchers were able to amplify the viral signal, in a manner similar to PCR.

While the device has yet to be approved, cleared, or authorized by the FDA, it holds promise for meaningful real-world application. For example, prior to a large public event, indoor spaces could be screened for the presence of COVID-19. If the virus were detected, remediation could be performed and the environment retested prior to the public event. In doing so, countless potential COVID-19 infections could be avoided.

This novel technology diverges from current efforts at viral detection in that it does not rely on the existence of an infected individual but rather focuses on environmental detection thereby constituting primary prevention. In the future, the technology could be applied to prevention of other infectious diseases, both viral and bacterial. Further work is needed to explore the potential application of this method.

I urge readers to respond to the above and offer opinions.

Is Covid-19 Becoming Immune to Us?

The Coronavirus has been a focal point for each individual in the past three years. Regardless of your age, gender, ethnicity, or even location, COVID-19 has been the one commonality for everyone. Because of COVID-19’s immense reach and detriment, scientists have worked tirelessly to source treatments and provide them to the people. Although the initial treatments worked in the beginning, as the virus grew and adapted, scientists, doctors, and Coronavirus professionals were forced to follow suit. To this day professionals are still trying to keep up with the ever-changing nature of the virus.

New research shows that initial Coronavirus treatments are slowly becoming more and more ineffective as the virus continues to mutate. The initial treatments for COVID-19 mainly consisted of monoclonal antibodies. Simply put, these are antibodies targeted to a specific illness, Coronavirus in this case. Because the antibody is targeted to one specific disease, as the disease mutates the antibody can no longer be applied to the newly altered disease. For example, recently the US Food and Drug Administration issued information regarding one Coronavirus antibody, Evusheld. They essentially stated that there is an increased risk of COVID-19 as certain variants cannot be neutralized or treated by Evusheld, the current monoclonal antibody. These new changes are critical for those with weakened immune systems who are reliant on strong antibodies to protect them.

To continue, scientists are exploring new ways and attempting to find new treatments for mutated viruses. They do this by seeking out vulnerable parts of the virus and creating an antibody for it. A former Harvard Medical School Professor, William Halestine, hopes that these new treatments will soon be in clinical trials for research.

One example of these clinical trials is currently being administered in Brazil and South Africa by Immune Biosolutions, a biotechnology company. Here they have created a new mix of antibodies and administered them to patients with both mild and high-severity cases of COVID-19. Two of the antibodies in the mix aim at a region of a spike protein where the virus would attach to the human cell. They want these antibodies to block this region and prevent the virus from attaching.

This process can connect to multiple concepts and ideas learned in our AP Biology Class. First, we learned about ligands and receptors, where each ligand is shaped specifically to its own receptor. In this scenario, the virus and antibody are both specific ligands for the spike protein and can only attach to specific spike proteins. This can be compared to our understanding of ligands docking with shape-specific receptors. Second, our understanding of antibodies can be paralleled with the company’s antibody mix. We learned that cells have a certain adaptive immunity to respond to new viruses. This can connect to the company creating new antibodies to adapt to the new virus. Furthermore, we learned that cells can have humoral or antibody-mediated responses, Immune Biosolutions antibody mix is exactly this, a humoral response.

I personally believe that there will be a point where the efforts of scientists and professionals surpass that of the virus. Where we can take control of the virus rather than working for it.  Hopefully, we as humans will eventually stop having to create newer and newer antibodies as the virus slows its mutations.

SARS-CoV-2 without background

 

BQ- Outsmarting Bebtelovimab

Neutralizing antibodies for treating COVID-19

On November 30, 2022, the FDA released a statement stating Bebtelovimab, an antibody treatment previously approved to work against COVID-19, has now lost its authorization status, due to the presence of new Omicron subvariants, BQ.1 and BQ.1.1, which are believed to be capable of avoiding this antibody treatment.

 

But, how are BQ.1 and BQ.1.1 able to avoid the treatments? Well, this can be traced back to the spike proteins themselves. 

 

When the SARS-CoV-2 virus enters the body, it is able to bind to the ACE2 receptors and therefore be able to multiply and spread its genetic material to other cells in the body. Thanks to the development of the COVID-19 vaccine, however, our bodies are essentially programmed to respond the same way we would to an actual infection. As a result, we produce antibodies that learn to recognize the spike protein and therefore fight against it. This connects back to our lesson in AP Biology about immunity acquired from infection and vaccination.

 

However, the COVID-19 vaccine was made to protect against the original strain of the virus only (using the original spike protein), thus leaving people defenseless against mutations of the virus, such as Delta and Omicron. This is specifically happening with the newest subvariants, as BQ.1 has mutations of the spike proteins that our bodies don’t recognize as well.

 

Recently, a bivalent version of the vaccine was released to the general public to protect against other mutations of COVID-19 as well, including Omicron. The vaccine does provide protection against the original Omicron variants found at the end of 2021 and beginning of 2022, but because of BQ.1 and BQ.1.1 both having even more dissimilar spike protein mutations, they are able to bypass our antibodies produced by the vaccine, even faster than other subvariants of Omicron. 

 

As a result, it is no surprise that the antibody treatment was pulled by the FDA; considering the variants can even bypass the newest boosters, they would likely be resistant to antibody treatments that were made to treat previous variants of COVID-19.

 

But this decision made by the FDA leaves us with even more unanswered questions than before: without Bebtelovimab approved for usage, what will happen to those hospitalized as a result of the new subvariants? And what about those who become hospitalized with previous subvariants? What will be their best chance?

 

 

 

Coronavirus and Natural Immunity…Are You Protected?

Since the start of the pandemic, scientists have vigorously worked around the clock, conducting research experiments and clinical trials to fully understand how this relatively new virus affects us. How long do our antibodies last? Should I get vaccinated? Can natural immunity protect me forever? The UTHealth School of Public Health, located in Houston Texas, conducted a research experiment on 57,000 volunteers (over the age of 20) across the state to grasp a better understanding of natural immunity and the presence of  SARS-CoV-2 antibodies in our system.

Dornbirn-COVID-19 antibody testing-02ASD

In October 2020, these volunteers enrolled in the Texas CARES survey to provide resources to understand antibody quantities over time. Researchers used blood-drawn samples from Oct. 1, 2020, to Sept. 17, 2021, to analyze the data around levels of antibody presence. Some of the variables identified from the data analysis are age, body mass index (BMI), use of smoking and vaping products, and the severity of the previous infection. Suppose you are exposed to Covid-19 for a greater period of time. In that case, you are much more likely to have a more severe infection which would drastically increase the number of antibodies you will eventually produce. The opposite goes for someone who is very briefly exposed to the virus. However, even with these indicated variables, all volunteers showed a similar rate of decreasing antibodies over time. “Our research shows that the level of antibodies in those previously infected increases for the first 100 days post-infection and then gradually declines over the next 500 days and beyond” (Michael Swartz, Ph.D., associate professor and vice chair of biostatistics at UTHealth School of Public Health). The findings were published in The Journal of Infectious Diseases.

Concluding this experiment, it is safe to say that you are most naturally protected from Covid-19 at 100 days after infection. After that period of time, your protection will gradually wane, slowly making you more vulnerable to severe symptoms again (similar to the covid-19 vaccine).  However, the data suggests that you will have some quantity of antibodies for well over a year after infection. As we learned in class this year, antibodies are a naturally formed secondary response from your immune system. The B-plasma cells secrete antibodies and can send them off to surround and immobilize the pathogen, allowing a macrophage to come and digest/destroy the cell. The B-memory cells are there to help prevent reinfection later down the road. This immune response is a way for our body to naturally protect us while storing information from previous infections for long periods of time. This is what keeps us safe!Antibody Opsonization

 

Is the recently discovered hidden cavity on the SARS-CoV-2 protein a target for drugs?

Many of us have been vaccinated against COVID-19 and have had the virus, leading us to become used to the virus being prevalent in our lives during the past few years. Even though a successful vaccine has been rolling out for a while now, new therapies have not yet been discovered for future strains. Finding new therapies for the virus remains a major priority in the field of science, even if many of us have been protected already. This issue remains a priority because new variants and strains have been continuing to emerge, and some resist present therapy mechanisms.

SARS-CoV-2

The most effective approach to attempting to combat the virus is addressing the proteins on the surface of therapeutic targets, known as spike proteins. The spike protein (S proteins) located on the surface of the virus leads to its spiky protrusions, and its mechanism to enter human cells. Like we learned in AP Biology class, the spike proteins of the virus latch to cells by matching with a specific receptor on a cell’s surface. The spike proteins of the virus have to latch on to the new cell to infect. Successful messenger RNA vaccines properly target this spike protein, which is the main goal when creating new therapies for viruses. 

                                             Spiky appearance of SARS CoV-2 virus

Luigi Gervasio, a chemistry and structural/molecular biology professor at University College London, and his team have been working towards addressing this issue. By partnering with the University of Barcelona’s research team, the two teams took the first steps to discover a possible mechanism for future drugs to detect and protect against the SARS CoV-2 Virus. Through thorough research and investigation, they uncovered a “hidden” cavity on the surface of a prominent infectious agent of the virus known as Nsp1. The team was able to make this discovery by testing small molecules that had the potential to bind to the Nsp1 cavity. The team identified one, 5 acetylaminoindane, which is essential for the development of new drugs against viruses. They concluded that this cavity permitted the calculation of the cavity’s atomically spatial arrangement, which will allow the development of these drugs.

The results of their breakthrough findings set the stage for developing new therapies that will be able to target the NSp1 protein against SARS-CoV-2 and present Nsp1 proteins in future coronavirus strains. Not only will this finding be impactful for targeting SARS-CoV-2 and future variants, but also new cavities on the surface of other proteins that have yet to be found by scientists. Finally, this research is monumental for both SARS-CoV-2 and virus treatment in years to come!  

 

2021: The Year Of The Coronavirus Variants

Alpha and beta kicked off the 2021 year, and several worrisome variants later, omicron closed it out. How omicron may come to define the pandemic’s future remains uncertain. But even as omicron comes on strong, one variant, which rose to global dominance midyear in a way variants like alpha and beta never did, continues to largely define the pandemic right now: delta.

Things had actually seemed to be looking up in some parts of the world in the late spring and early summer of 2021, a year and a half into the COVID-19 pandemic. In the United States, for instance, millions of people were vaccinated, cases of the disease were falling, and people were beginning to socialize and resume normal activities. 

But then delta hit hard. First spotted in India in October 2020, this variant of SARS-CoV-2, the coronavirus known as COVID-19, quickly swept around the world, supplanting other versions of the virus in 2021. Delta overwhelmed health care systems, tore through unvaccinated populations and showed that even the vaccinated were vulnerable, causing some breakthrough cases.  

It soon became clear why delta wreaks so much havoc. People infected with delta make more of the virus and spread it for longer than people infected with other variants, researchers reported in Clinical Infectious Diseases in August. As a result, delta infections are more contagious. Consider two scenarios in a community where no one has immunity to the coronavirus: A person infected with an earlier version of the virus — the one first identified in Wuhan, China, that set off the pandemic — might spread it to two or three others. But a person infected with delta may transmit it to five or six people.

COVID-19 Coronavirus Symptoms

Mutations similar to delta’s have appeared here and there in other variants that proved themselves capable of spreading more easily or better evading the body’s immune defenses than the original virus. That includes alpha, first spotted in the United Kingdom; beta, first characterized in South Africa; and gamma, first noted in Brazil. The recently discovered omicron variant, first described in South Africa and Botswana, also shares some of the same mutations. 

Some of delta’s grab bag of mutations are identical to those found in other variants, while others change the same protein building block, or amino acid, in a different way or pop up in the same part of the virus. For instance, alpha and omicron also have the same mutation of the 203rd amino acid in the N protein, but it is a different amino acid change than seen in delta. And some mutations are entirely new to delta. 

3D medical animation coronavirus structure

These mutations on the coronavirus’ spike protein are what define delta as delta. The spike protein helps the coronavirus attach to and enter human cells penetrating host cells and cause infection. Spike proteins as learned in AP Biology while talking about COVID-19, a spike protein is a protein that forms a large structure known as a spike or peplomer projecting from the surface of an enveloped virus. The delta variant’s version carries a unique collection of mutations, marked by yellow dots in this 3-D rendering. Some of these mutations may help the virus more easily infect cells or hide from antibodies.

Though more recently in 2022 most of the population is getting the omicron variant, we must not forget the dominant variant that took control of the world and harmed a lot of people within a very short frame of time. Just when we thought we were out of the woods of COVID-19 during the summer of 2021, the delta variant proved us wrong.

Optimus Prime, Megatron, Proteins? The New Transformer Vaccine Candidate!

Amid the global outbreak of COVID-19, with no end in sight after nearly two years, the future wellbeing of humans is in danger. Coughs, fevers, and shortness of breath have lent way to millions of deaths across the globe. As thousands of researchers relentlessly work to find solutions to this virus, multiple vaccine candidates have emerged. Specifically, in the United States, millions of Americans have received doses of the Pfizer-BioNTech, Moderna, and Johnson & Johnson’s Janssen vaccines. However, scientists at Scripps Research recently recognized a new, self-assembling COVID-19 vaccine as a potentially more efficient and effective way to fight this worldwide battle.

 

Primarily, it is critical to understand how vaccines function as they help protect the immune system. The COVID-19 vaccines currently in effect are mRNA-based; in other words, the messenger RNA signals one’s body to produce a harmless viral protein that resembles the structure of a spike protein. The body, with the help of T-Helper cells, recognizes this structure as a foreign invader as B cells bind to and identify the antigen. The T-Helper cells will then signal these B cells to form B-Plasma cells and B-Memory cells. When getting the vaccine, the B-Memory cells are especially important as they prevent reinfection. This is a process known as adaptive immunity. Here, in the event of future infection with the spike-protein COVID-19, the memory cells would help carry out the same response more quickly and efficiently. Essentially, this process acts as the body’s training in case of any future infections.

 

While the Scripps Research COVID-19 vaccine would evoke a similar immune response to that described above, it differs from other candidates in how it assembles in the human body; this new vaccine would be comprised of proteins that are able to self-assemble. On their own, these nanoparticle proteins would transform into a sphere protein structure surrounded by smaller proteins, mimicking the coronavirus’s shape. Here, the self-assembled spike proteins are more sturdy and stable than in an mRNA-produced structure. Thus, it more accurately prepares the body for future infection with COVID-19. In fact, multiple tests found that mice who were given the experimental vaccine were able to fight off not only SARS-CoV-2 but also SARS-CoV1 along with the alpha, beta and gamma variants.

 

Nonetheless, influencing the public to get a newer vaccine instead of the well-trusted vaccines already in production requires proof of the candidate’s benefits. Primarily, as mentioned, early results find that this new candidate would perform well with many different strains of COVID-19. Additionally, researchers assert that this vaccine would be relatively simple to produce on a mass scale. Lastly, scientists found that this vaccine may well be more protective and long-lasting than current vaccine candidates. Although the process of vaccine approval is lengthy and often difficult, I am hopeful for the future of the Scripps Research vaccine if it is put into production. Moreover, I believe that such experimentation with self-assembling nanoparticle proteins transcends the current pandemic. The benefits of this field present a wide array of opportunities, and I look forward to seeing what its future may hold.

 

What do you think? Are these transformer-like self-assembling particles a gateway to the future of medicine or an unnecessary distraction from effective treatments already in circulation?

Changing Composition of SARS-CoV-2/Understanding the Alpha Variant in England

Since its emergence in the Fall of 2020, the original SARS-CoV-2 variant of concern (VOC) rapidly became the dominant lineage across much of Europe. Although, simultaneously, several other variants of concern were identified globally. Like B.1.1.7 or the Alpha Variant (first mutation of SARS-CoV-2 found to be more transmissible), these VOCs possess mutations thought to create only partial immunity.

Researchers are understanding when and how these additional VOCs pose a threat in settings where B.1.1.7 is currently dominant. This is where scientists in the UK examined trends in the prevalence of non-B.1.1.7 lineages in London and other English regions using passive-case detection PCR data, cross-sectional community infection surveys, genomic surveillance, and wastewater monitoring. The study period spanned from January 31st of 2021 to May 15th of 2021.

Through this data, the percentage of non-B.1.1.7 variants has been increasing since late March 2021. This increase was initially driven by a variety of lineages with immune escape. From mid-April, B.1.617.2 (WHO label of Delta) spread rapidly, becoming the dominant variant in England by late May, similarly to the Alpha Variant.

Shown by many mutations in the spike protein receptor (RBD), studies suggest B.1.1.7 is 50–80% more transmissible with greater severity than previously circulating Covid Variants. B.1.1.7 rose rapidly, from near 0% to over 50% in under two months, and soon made up greater than 98% of sequenced samples in England. Its rapid spread necessitated a third lockdown in England during last January. Subsequent spread in Europe and North America has highlighted the threat this variant poses to a continued alteration of the Coronavirus.

The 69–70 deletion in B.1.1.7′s Spike gene causes PCR tests to return negative results for that gene target which is a major problem when identifying and testing for Covid. One of the most important changes in lineage of B.1.1.7 seems to be a spike protein substitution of N501Y, a change from asparagine to tyrosine in amino-acid position, that enhances transmission. These alterations can change antibody recognition while also affecting ACE2’s (receptor protein) binding specificity which can then lead to the virus becoming more infectious. We are seeing a pattern of the same type of mutation in Covid consistently.

An example of a similar mutation that has been recent is the new Omicron variant out of South Africa. Omicron is similar in which their has been a specific change in the spike protein where antibody recognition is limited and it is highly transmissible between any living organism. Our class has understood and studied the importance of our body being able to identify and create an antibody for the specific antigen being displayed by a pathogen.  These mutations within the spike protein allow another immune response to happen which a different antibody has to be created to mark the different antigen being displayed. Unfortunately, this will be a continuing problem without vaccine mandates since it gives the virus more time to mutate where outbreaks like in South Africa will continue to transpire around the world.

The COVID-19 Vaccine: How, What, and Why

We have all seen the news lately – COVID, COVID, and more COVID! Should people get the vaccine? What about the booster shot? Are vaccines more harmful than COVID-19? Will my child have birth-defects? This blog post will (hopefully) answer most of your questions and clear up a very confusing topic of discussion!

Discovery of monoclonal antibodies that inhibit new coronavirus(Wuhan virus)

First off, what are some potential effects of COVID-19? They include, but are certainly not limited to, shortness of breath, joint pain, chest pain, loss of taste, fever, organ damage, blood clots, blood vessel problems, memory loss, hearing loss tinnitus, anosmia, attention disorder, and the list goes on. So, our next question naturally is: what are the common effects of the COVID-19 Vaccine? On the arm that an individual receives the vaccine the symptoms include pain, redness, and swelling. Throughout the body, tiredness, a headache, muscle pain, chills, fever, and nausea can be experienced. To me, these effects seem much less severe than COVID-19’s!

COVID-19 immunizations begin

Now that we have covered effects, you are probably wondering what exactly the COVID-19 Vaccine does – will it make it impossible for me to get COVID-19? Will I have superpowers? Well, you may not get superpowers, but your cells will certainly have a new weapon, which we will discuss in the next paragraph! The COVID-19 Vaccine reduces “the risk of COVID-19, including severe illness by 90 percent or more among people who are fully vaccinated,” reduces the overall spread of disease, and can “also provide protection against COVID-19 infections without symptoms” (asymptomatic cases) (Covid-19 Vaccines Work).

So, how does the vaccine work? Many people think that all vaccines send a small part of the disease into us so our cells learn how to fight it at a smaller scale. However, this is not the case with the COVID-19 vaccine! As we learned in biology class, COVID-19 Vaccines are mRNA vaccines which use mRNA (genetic material that tells our cells to produce proteins) wrapped in a layer of fat to attach to cells. This bubble of fat wrapped mRNA enters a dendritic cell through phagocytosis. Once inside of the cell, the fat falls off the mRNA and the strand is read by ribosomes (a protein maker) in the cytoplasm. A dendritic cell is a special part of the immune system because it is able to display epitopes on MHC proteins on its surface.

Corona-Virus

After being made by the ribosomes, pieces of the viral surface protein are displayed on the surface of the dendritic cell (specifically the MHC protein), and the cell travels to lymph nodes to show this surface protein. At the lymph nodes, it shows the epitope to other cells of the immune system including T-Helper Cells. The T-Helper Cells see what they’re dealing with and create an individualized response which they relay to T-Killer cells that attack and kill virus-infected cells. This individualized response is also stored in T-Memory cells so that if you do end up getting COVID-19, your body will already know how to fight it! The T-Helper Cells additionally gather B-Plasma cells to make antibodies that will keep COVID-19 from ever entering your cells. T-Helper Cells are amazing! As you can see, the vaccine never enters your nucleus, so it cannot effect your DNA! No birth-defects are possible!

You are now equipped with so much information and able to disregard many common misconceptions about the COVID-19 vaccine! Additionally, you can make an educated decision about whether or not you should get the vaccine. I think yes! If you have any questions, please feel free to comment them and I will answer. Thanks for reading!

 

Changing Course: How Scientists Can Update Vaccines With Emerging Variants

SARS-CoV-2 , the virus which causes COVID-19, is changing rapidly, which in turn warrants changes to the vaccines created to slow its spread. This virus is mutating fast, with a new mutation establishing about every 11 days. These mutations may not be different enough to cause an immediate difference, but each and every person who catches SARS-CoV-2 opens more possibilities for mutations.

Spike omicron mutations top

Omicron Mutation Spike Protein

The most recent large variant to be identified was B.1.1.529 Omicron originating in South Africa. The Omicron variant has more than half the amount of mutations as the Delta variant, raising concern among health officials, who fear that the virus may differ just enough from the original for vaccines to be less effective. This fear stems from the idea that the vaccine-created antibodies will no longer be able to recognize the mutated virus’ spike proteins, resulting in an ineffective vaccine.

The current mRNA SARS-CoV-2 vaccines work in a fascinating way. Scientists utilize harmless lab-grown mRNA that contain coded instructions on how to create the SARS-CoV-2 spike protein, and place that technology into a vaccine.

Then, once the mRNA vaccine is injected into the patient, the patient’s cells will create the identical spike proteins, prompting an immune response. As we have learned in AP Bio, the adaptive immune system would eventually churn out antibodies tailored to the spike protein, so any future SARS-CoV-2 virus that enters the body will be neutralized and destroyed, even before it has the chance to infect someone.

Solo-Viral Vector-vaccine-27

SARS-CoV-2 Vaccine Vial

Because of this technology, scientists are readily able to create an updated version of the SARS-CoV-2 vaccine within a matter of days, for distribution in around three months. How do they “update” the vaccine? First, the Omicron spike protein is sequenced into their nitrogen bases (A, T, G, and C’s). Once that is complete, scientists use this sequence to create a DNA template. They then mix in enzymes which build an mRNA copy of the DNA template through a process known as transcription.

This process unfolds in a matter of days… so why does it take three months? Creating the physical mRNA for the vaccine takes only three days, but then the vaccine makers need to produce enough mRNA for doses, which would be used the next six weeks in pre-clinical testing on human cells. Once pre-clinical testing is complete and proves the vaccine works as expected, then the manufacturing of the vaccine can begin. The vaccine wouldn’t be released just yet — the next five weeks would be clinical trials and testing, and after that, the updated vaccine can begin rolling out to the public.

Even though SARS-CoV-2 is evolving faster than vaccines can keep up with, past technology was no where near as quick as today’s. In my eyes, being able to produce an updated vaccine in a matter of months is nonetheless a scientific feat. Comment what you feel was a gigantic scientific leap during this pandemic below!

How does the Omicron variant of COVID-19 compare to the deadly Delta variant?

With news of the new variant of the COVID-19 virus reaching 16 states here in the US, many are asking: What is this Omicron variant?

The Omicron variant of COVID-19 was first reported to the World Health Organization by the Head of South African Medical Association, Dr. Angelique Coetzee. As of December 6, 2021, there are about 59,000 Americans hospitalized due to said variant.  The Delta variant, more than twice as contagious than previous variants according to the CDC, still continues to be the leading cause of COVID-related hospitalization and deaths today in the US and many other countries. However, medical experts are saying that Omicron has a few different key mutations that make it very likely to outperform Delta. How does this Omicron variant compare to the deadly Delta variant which we’ve been battling this year? Here are the main things you need to know.

Symptoms of the Omicron variant:

  • Fever or chills
  • Cough
  • Shortness of breath or difficulty breathing
  • Fatigue
  • Muscle or body aches
  • Headache
  • New loss of taste or smell
  • Sore throat
  • Congestion or runny nose
  • Nausea or vomiting
  • Diarrhea

Infection and Spread:

So far, people who have been diagnosed with the Omicron variant of SARS-Cov-2 in the US have or had mild symptoms, yet it is said to be much more contagious. Why? The difference in the structure of the spike proteinVariants of COVID-19 have mutations present in the spike protein due to copying errors in our DNA.

File:Omicron.jpg - Wikimedia Commons

Omicron Structure pictured

The Delta variant has 18 mutations in its spike proteins…Omicron has a whopping 43! That is many, many more than Delta. Jeremy Kamil, associate professor of microbiology and immunology at Louisiana State University Health Shreveport, said, “The number of changes blew people’s minds…It’s an exaggeration to say we’re back at square one, but this is not a good development.”

Around 30 countries have detected said variant so far; 19 states in the US have. The high number of mutations it contains does not necessarily mean it’s more dangerous. As previously stated, Omicron patients have thus far exhibited milder symptoms. Dr. Coatzee said that she first discovered Omicron’s appearance as her patients exhibited “unusual symptoms” in comparison to the Delta variant. However, don’t be too scared; experts say our immune systems have grown more equipped to fight the COVID-19 virus.

We still have yet to learn more about Omicron and its nature, infection, etc., as it is very new.

Free COVID-19 Illustrations - Innovative Genomics Institute (IGI)The original COVID-19 virus’s structure is pictured above

With Omicron having more than double the mutations as Delta, the likeliness of transmission/level of contagiousness is quite high–also meaning that the efficacy of our vaccine could be compromised. The Omicron spike protein has similar components that of the Delta, beta, and gamma variants, meaning that the rate of transmissibility is similar. With Omicron having the largest number of mutations, however, transmissibility can be increased more than 2x!

What should you do?

Well, continue to follow the standard COVID-19 measures. Wear a mask, social distance, wash your hands, travel less, and just be careful. These methods have proven time and time again to help. Travel restrictions on the rise can be tough with the holidays coming, but remember that they are only in place for the sake of our safety. It is important to follow these rules as the pandemic is not over.

Mu Vs. Delta: Which is the Scarier SARS-CoV-2 Variant?

The Mu variant has been a term of interest in a lot of peoples conversations. This is due to the fact that it has been getting a lot of news coverage as one of the latest variants of the world wide virus SARS-CoV-2. It has been portrayed to be the next big virus ready to take over the world, but, does it have the legs to do so and how much more dangerous is it than other mutations such as the Delta variant?

Laboratoire de Physique de la Matière Condensée laboratoire PMC - 46940329992

The Mu variant first popped up on January 2021 in Columbia and has spread to about 39 countries since then. Mu is very similar to the original version of the SARS-CoV-2 virus. However, where it differs is at the two mutations E484K and K417N. These are what cause Mu to be seen as a variant of the original virus. The traditional anti-bodies that would normally be able to stop SARS-CoV-2 are seemingly ineffective against Mu leading the World Health Organization to classify it as a “Variant of Interest”. This classification means that it will continue to be monitored closely to derive the best possible plan on how to contain it. The mutations of Mu give it different properties such as mutation E484K, this mutation caused a drastic change in the structure of the original Covid-19 protein and thus made it so that it is able to by pass the human immune system easier. This is seen as a big problem because studies of how the anti-bodies effect SARS-CoV-2 conducted in US and UK compared to those conducted African countries have shown that African cases seem to be severely less effective against SARS-CoV-2. Researchers believe this is due to Africa being exposed to significantly more cases with the E484K mutation. As discussed in class this sequence of numbers and letters means that in the original amino acid sequence at spot 484 there was a Glutamic Acid amino acid (which is a negatively charged), and then once the mutation occurred it then became Lysine which is positively charged. This change in properties is what causes the protein to fold differently thus causing a severe changes as to how it behaves in humans. The Mu variant seems to have been able to disregard the anti-bodies and still effect the human body. However this seems to be the reach of its dangerous mutations because as of now scientist have no reason to believe that Mu is any more transmissible than the original virus which is a good sign.

The Delta variant has been an extremely worrisome mutation for some time now with the first case being noted back in October of 2020 believing to have originated in India. The Delta variant has been one that has taken over the world recently and it seems as though the former version of Covid-19 is a thing of the past and that Delta is the new pandemic. This is due to Delta’s interesting mutation P681R. The original amino acid at place 681 was Proline which has no charge, however after the mutation occurred it became Arginine which is negatively charges causing the amino acids to behalves differently with each other and the environment. This mutation is the cause of Delta’s incredibly rapid spread throughout the world. This ability to be globally spread in months is just one of the reasons why it has also taken the lives of so many as more people are getting Delta over the initial virus now.

Ultimately, it is clear which variant has been seen as the more dangerous by the media: Delta. However, while the Delta variant is scary in it’s own right, it just seems to be a faster spreading SARS-CoV-2. Meanwhile Mu has a way to almost be a completely different virus as it spreads just as fast as the original virus (it only took 4-5 months to completely shut down the world). It is also able to completely bypass the anti-bodies if you already had Covid-19 or have the vaccine. If this virus reaches levels of spread to the likes of Delta then scientist are going to have to create a new vaccine for Mu as it is simply to dangerous to ignore. Feel free to share how you feel about all of this and let me hear your take on the more menacing variant!

How the Healthcare Industry Disadvantages Minorities

Although our country is built on the principle that “all men are created equal,” this notion has yet to be completely true in modern America or our history. The disproportionate death rate from COVID-19 in Black Americans is a telltale sign of the inequities, or injustices, in place in the healthcare industry. While it’s easy to blame these inequities on higher obesity, diabetes, or hypertension rates in Black Americans, there is more to it than that.

These inequities are also very prevalent in prostate cancer mortality, as the numbers are far higher in Black men than white. This results from a multitude of factors, including that they “generally get fewer PSA screenings, are more likely to be diagnosed with later stage cancer, are less likely to have health insurance, have less access to high-quality care,” or perhaps even other factors, according to Daniel Spratt, M.D. These are all indications of structural inequality, a system of unfairness created by institutions, in our country, not just circumstantial or individual biases. 

Black and minority patients are likely to feel more comfortable with minority doctors, but unfortunately this isn’t always possible. For obvious reasons, this reduces implicit bias from the physicians. Aside from a harder time getting proper care, minorities also suffer from an unequal amount of expenses. According to a UMichigan team, “the last six months of life is $7,100 more expensive to the Medicare system for Black people, and $6,100 more expensive for Hispanics, compared with white people,” although more research must be done to determine exactly why this is. One of the root causes for these trends could be lack of nutrition. Even before the pandemic, many minority adults and children didn’t have access to nutritious foods, which plays a major role in health status. This also continues to be perpetuated by institutional racism and the vicious cycle of poverty in America. Unfortunately, many situations only worsened with the emergence of COVID-19. This is a very pressing issue that must be addressed sooner rather than later, in order to ensure the safety of many adults and children.

As we have learned in bio class, the use of masks to prevent the spread of COVID-19 is absolutely essential. Especially in urban or tightly packed communities, where COVID-19 can easily spread from person to person, masks are needed more than ever. Additionally, these communities often have high amounts of minorities, worsening their odds of becoming seriously ill. Fortunately, with the development of safe and effective vaccines, there is finally a light at the end of the tunnel. Minority communities desperately need vaccines in order to prevent any more lives lost, and luckily distribution is gradually picking up. Although this has been a tragic year, I hope America will learn from this situation, becoming more prepared for future unpredictable scenarios and fixing the inequities prevalent in our country.

What face mask should you go buy?

When you are leaving your house, how do you decide what mask to wear that day? Have you tried different kinds? Masks have become a new part of our daily life. We all have to wear masks in social situations or anywhere out in public in order to prevent ourselves and others from contracting coronavirus. In the past few months, there have been many different types of masks that are being sold. Some even have super cool designs, and some are more comfortable than others. So, when you are picking a mask, do you stop and think about which one is the most effective at doing its job of protecting you?

Overview on Masks and the protection

The article from Healthline explores the variety of masks, and discusses the usefulness. In general, masks are an essential preventative measure to take as it reduces the risk of transmission of Covid-19, along with the other protective measures, such as distancing and proper hygiene. The purpose of masks are to protect oneself from the respiratory droplets from traveling into the air. It is especially important to protect yourself in public because around 80% of the coronavirus transmission has been rooted from asymptomatic carriers. An asymptomatic carrier is someone who has contracted the Coronavirus, but has no symptoms of the virus. However, asymptomatic people can still spread the virus.  By wearing a mask, one is able to prevent the airborne transmission of the coronavirus pathogens through our bodies primary defenses such as the mouth, nose and the eyes. Since the coronavirus pathogens are able to get past the barrier defenses if you do not wear a mask and take other preventative measures, this triggers innate cellular defenses, which lead to the inflammatory response in our body, such as fevers, colds and more. Inner surface is lined with tiny hairs cilia or mucus membranes which trap pathogens and can be removed by sneezing or coughing or swallowed to be broken down by stomach acids.

Surgical Masks and Valve Masks

Surgical masks are disposable, single use masks that cover your mouth and nose. They are made out of a breathable synthetic fabric. There is not a airtight seal around the area it covers, and there has been a large range on how the surgical masks filter pathogens. Respirators have intense filters that filter the pathogens in the air. These are also airtight, unlike the surgical masks. Some of the respirator masks have valves which lets some exhaled air to escape. The downside to this is that it does not protect others from pathogens exhaled through the valves. This is because the valves in the mask allow respiratory droplets from the person wearing the mask out into the air and get to other people.

N95 Respirator Masks

N95 masks can protect one from particles as small as 0.3 microns. N95 masks are extremely effective in preventing airborne particles from entering through the areas of the nose and mouth. The name “N95” comes from the fact that the respirator blocks 95% of small and large particles out. The ‘N’ is the respirator rating class. The ‘N’ stands for “non oil”, so basically no oil based particulates are present. The filtering and protection is much higher than a surgical or a cloth mask.

Homemade and store bought Cloth Masks

Masks that many people make at home are considered to be the least effective as the fabric is less secure and allows for small droplets to enter inside the mask. Also, many of these cloth masks have gaps near the nose, jaw or mouth area that also be areas where the droplets can be inhaled by the person wearing the mask. If you do wear a mask made at home, use 100% cotton fabric, which is the most effective material for cloth masks. Now, most stores are selling all different kinds of cloth masks. In general, all cloth masks vary with effectiveness as they are constructed with different fits, materials, and layers which all effect filtration. But, overall, store bought masks have had better securely fitting masks, which is very important in wearing a face mask for protection to properly cover the nose and mouth. If you are buying a cloth mask from a store, look for cloth masks that come with a nose wire and a filter insert which upgrade the masks. Overall though, whether it is homemade or store bought, surgical and n95 masks are more effective than both in protecting the wearer.

Overall, a key factor in any mask usage is how you wear the mask. Have you caught yourself accidentally letting the mask slip off your nose, and not doing anything about it? The proper usage is extremely important in having the masks be effective and prevent ourselves from getting the virus. We are in a very critical time, and the least we can all do is wear a mask to protect ourselves, others and lower the spread of the virus. We can all help reduce transmission! Be sure to wear a mask and be safe!

A New and Horrifying Effect of COVID-19

The COVID-19 virus has been terrorizing innocent people from all corners of the world. The symptoms and effects of the virus have proven to be devastating especially for young children and the elderly. If that wasn’t bad enough, scientists have recently discovered that COVID-19 is linked to erectile dysfunction.

Read More

Testing For The Virus That Changed Our Lives

SARS-CoV-2, the virus that causes the COVID-19 disease, has changed our daily lives completely. Doctors and researchers have been working endlessly to figure out how to put a stop to its spread and get us back to our normal ways of life. Getting tested for COVID-19 is an extremely helpful way to further our knowledge of the virus and prevent it from spreading.

In order to prevent the spread of the virus, we must be able to track it. Researchers have found a way to test for COVID-19 through diagnostic tests. The tests are performed by healthcare personnels at clinics or doctors’ offices, with specific kits. The head is tilted back at a 70 degree angle and a swab is inserted inside the nostril, sometimes both, to collect the cells from the back of the nose. The swab is inserted to absorb the cells and then put into a sterile tube to be sent to a laboratory. There, a PCR test is performed and the cells are examined.

You might ask, “how does the test work?” In simple terms, the virus’ RNA is made up of thousands of nucleotides. Researchers have developed a PCR test, in which it looks for the virus’ DNA, within a person’s cells. Since the virus does not have DNA but rather has RNA, a RT-PCR test is needed to test for the disease. The RT-PCR test consists of various “reverse transcription polymerase chain reactions” where the RNA of the virus is transcribed into “complimentary DNA” that is used in the PCR test. The nucleic acids of a person’s cells are taken from the swab they were tested with, and replicated millions of times to be examined. The DNA is processed by a PCR instrument to see if the genes of the virus is within the human cell. 

SARS-CoV-2 has a surface made up of spike proteins. The spike proteins attach to a receptor on the surface of a human cell and fuses through the membrane. This is how it passes through its first line of defenses and enters respiratory epithelial cells lined on the respiratory tract, making it a respiratory virus. Once the virus is inside of the cell, it releases its RNA and is encoded, thus replicating itself. From there, the dendritic cells work to get a defense reaction from the immune system. 

When the pandemic had recently started, there were very limited tests available. The CDC, Center for Disease Control and Prevention, urged that only people with symptoms or people who have had high exposure to a person who tested positive be tested. Symptoms include a dry cough, fever, and shortness of breath. It was later found that people were testing positive for COVID-19 who had no symptoms, or had high exposure to it. This pushed researchers to develop more tests due to the fact that the virus was spread easier than they initially thought. Now there have been millions of tests shipped out, and more people are able to get tested. This is prevents the virus from spreading through people who do not know they have it. It also allows researchers to get a more accurate number of positive cases. The development of test kits and PCR testing has been extremely successful, even though there have been some inaccurate results. 

When do you think we will be able to return to our normal lives?

Our Next Steps To Defeat Covid-19.

Introduction

Whether it is protection from an angry bear, a criminal on the loose, the simple flu, or for safe sex, the measures we take to ensure our safety is one of the most important steps to continue to stay healthy and safe. We must continue to educate ourselves on what actions we must take in order to keep ourselves and the people around us as safe as possible.

Recently, our society has had a lot of controversy around products like masks and their effectiveness. Although many of our methods may not guarantee complete safety, we must attempt to reduce the amount of spread of serious viruses like SARS-CoV-2.

To quickly clarify, SARS-CoV-2 is the virus that invades our bodies. When SARS-CoV-2 is able to bypass our bodies’ immune system functions and infect cells in our system, our bodies contract the disease Covid-19. If further information is desired, please refer to this study on SARS-CoV-2 and Covid-19 conducted by the US National Library of Medicine National Institutes of Health.

As we approach a whole year with the presence of Covid-19 in the United States of America, we must stop to reflect on our actions and see what we can do to prevent the virus from wreaking more havoc on our society. One of the most important factors for Covid-19’s ability to spread as much as it had, was the lack of proper protection techniques used by citizens of the United States of America.

Firstly, it is very important to understand how SARS-CoV-2 is able to transfer from person to person so easily. According to the CDC, The most common way for SARS-CoV-2 to spread is through people inhaling respiratory droplets, released through other people’s coughing, sneezing, talking, etc. into their own nose and mouth. Although much rarer, SARS-CoV-2 can sometimes be spread through airborne transmission and contact with contaminated surfaces.

Since breathing is a necessity to continue living, we obviously can’t perfectly avoid inhaling these respiratory droplets, but in what ways can we try to reduce the damage of possible Covid-19 cases in the United States of America…

Forms of Protection

According to the CDC, we can take very specific steps in order to reduce the spread of Covid-19.

To further elaborate on a few of these methods, we as a society must educate ourselves on the best and most efficient way to carry out these actions. One main example at the moment is mask usage in the United States of America. Despite constantly being told, I often see many citizens wearing their masks in ways that are strongly discouraged: some under the nose, some dangling from their ears, and some not on at all. Not only does this put their own bodies at risk of contracting Covid-19, but it also risks the health of others as well.

According to the articleStill Confused About Masks? Here’s the Science Behind How Face Masks Prevent Coronavirus” by Nina Bai, a study conducted by health affairs, compared the Covid-19 growth rate before and after a mask mandate. Nina  states that “the first five days after a mandate, the daily growth rate slowed by 0.9 percentage-points compared to the five days prior to the mandate; at three weeks, the daily growth rate had slowed by 2 percentage-points.” Another study conducted by Christopher Leffler, Edsel Ing and many more professionals also found that out of the 198 countries that they had observed the Covid-19 death rate of “those with cultural norms or government policies favoring mask-wearing had lower death rates.”  Through studies, we can observe the effectiveness of such resources and use these materials such as masks to the best of our abilities to help each other stay safe.

If you are in need of instruction on how to properly use a mask and other small important pieces of information. Please refer to the CDC’s article “How to Select, Wear, and Clean Your Mask”

Another term that many have learned this year, is the term “Social Distancing.” Although staying 6 feet apart from one another like the CDC has told us, it becomes very difficult for every day citizens to abide to this rule as we have a natural tendency to gravitate towards our peers, family and other people in our communities. In order to reduce spreading the virus to other people we must stay socially-distant from others to allow people to live their lives much more comfortably, especially considering that most cases of SARS-CoV-2 transfer are caused through inhaling respiratory droplets.

Another luxury many people don’t use properly is the sinks that are in our homes and bathrooms. I’ve seen way too many people use hand sanitizer instead of going to wash their hands for the recommended 20 seconds with soap and water. For many reasons, this practice can be extremely harmful if someone is trying to prevent the spread of SARS-CoV-2. According to the CDC, there are many cases where using regular hand sanitizer won’t be as efficient as a simple washing of hands with soap and water. For example, hand sanitizer is not as efficient on greasy and dirty hands: hands after handling food, playing sports, going fishing and many other activities that may lead to dirty hands. In cases as such, the CDC recommends using soap and water for 20 seconds. However, we must truly wash our hands by properly scrubbing our hands and not simply allow the water from the sink to run through our fingers and palms. The friction caused by scrubbing allows for the lifting of dirt, grease and microbes on your skin. Microbes are also extremely present under your nails which is why your parents always tell you to make sure to get your nails when you wash your hands. Without properly cleaning our hands and other parts of our bodies, we may accidentally bring harmful substances towards our face, where the virus may be able to easily enter our bodies. By cleaning our hands thoroughly and carefully, we significantly reduce the chances of spreading the virus to others and ourselves.

Biological Implication

The reason the CDC places so much emphasis on thoroughly washing your hands with soap and water, is so that we can make sure to keep our hands clean from any harmful substances. If someone were to only wash their hands with water, they wouldn’t be able to wash off all the non polar substances like grease and oil off of their hands. For this reason, we use soap to and water rather than only water. Due to water’s polar properties, it can only bond with other polar molecules. When one adds soap into their cleansing routine, there are two new parts being tossed into the mix. The hydrophilic heads from the soap attach to the water molecules and the hydrophobic tails of the molecule bond with the non polar substances such as grease and oil. The water then continues to carry the soap and harmful substances away from our hands as other water molecules pull them down with them as gravity takes its course. Soap, being made of lipids, shows versatility as it’s able to bond with both polar and non polar molecules and allows us to fully wash our hands with its polar and non polar qualities.

Conclusion

With proper masks, socially-distant people, clean hands and many other precautions we can make sure that the spread growth is reduced way more than it previously was. Scientists are still trying to figure out all the details themselves. They’re human beings and they’re bound to make mistakes as well, so we must be understanding and flexible when new studies and information prove claims that could help us reduce the spread of SARS-CoV-2 and Covid-19 even more. In these troubling times we must look out for each other and be strong yet malleable as we face hardships that many haven’t ever experienced before.

 

 

 

How Could the Coronavirus Pandemic Harm the Environment?

In light of the chaos of the coronavirus pandemic, the worldwide pandemic caused by SARS-CoV-2, and all of its negative effects, people have been searching for some silver lining to the whole mess. I am someone who is passionate about saving the environment, and I was thrilled to hear about positive environmental outcomes that the pandemic caused. Unfortunately, while rumors have circled around that the environment has benefitted from quarantine, experts are now saying the opposite could soon be true. It is hard to tell what the future will hold, but signs point to a risk of a future with more traffic, pollution, and resulting climate change. 

During April, the prime of stay-at-home orders and when most people were on full lockdown, daily global carbon emissions were down 17% from 2019. However, by June they were only down about 5% from 2019, and at this point many people were still not going about daily life like “normal.” Corinne Le Quéré, professor of climate change at the University of East Anglia in Britain says that “as soon as the restrictions are released, we go right back to where we were.” A somewhat similar situation during the 2007-2008 financial crisis provides some insight into the future. At the time, emissions dropped, but later rose right back up. 

China exhibits an example of a quickly diminished hope of change in their air quality. As they were the first country to shut down, they had a dramatic shift in air quality due to slowed manufacturing and transportation. However, they were also one of the first countries to begin reopening, and this change did not last long. Factories pushed to make up for lost time and the pollution consequently returned, even growing to higher levels than before the pandemic in certain places. Traffic levels have also apparently bounced back to the same magnitude as before the pandemic, despite the fact that there are still people who have not yet returned to regular life and are unaccounted for in this statistic. Furthermore, industries in fossil fuels, plastics, airlines, automobiles, etc. have been negatively impacted by the virus and now are searching for any way they can to make a profit. Governments including the US have complied with their pleas for cash, regulatory rollbacks, and other “special favors.” As a result, “there’s a serious risk that polluters could emerge from this crisis bolder and potentially more profitable than ever,” says Lukas Ross, a senior policy analyst at Friends of the Earth. 

Another devastating example of negative environmental impacts can be seen in Brazil’s Amazon rainforest. During the pandemic illegal loggers, people who harvest, transport, process, buy, or sell timber in violation of national or subnational laws, took advantage of the “smokescreen” provided by the pandemic and caused destruction in the rainforest that surpassed amounts in previous years. According to satellite data, 64% more land was cleared in April 2020 than in April 2019, despite 2019 being a record year for deforestation for the past decade. This is significant because the Amazon rainforest plays a vital role in regulating the world’s oxygen and carbon cycles, producing roughly six percent of the world’s oxygen. As we know from biology class, oxygen is essential as it is one of the main building blocks of life. Our cells need oxygen to produce various proteins, and ultimately more cells. Oxygen is also crucial in many of our body systems. Without oxygen, the creation of carbohydrates, nucleic acids, and lipids would be impossible. The Amazon, which produces a significant amount of oxygen, is being destroyed more and more every year. The rainforest is also considered a carbon sink, meaning it absorbs large amounts of carbon dioxide from the atmosphere, lowering CO2 concentrations. Its function as a carbon sink helps combat CO2 levels in the atmosphere and climate change.

It is unknown what else is in store for the environment in the remainder of the pandemic and in coming years, but we can only hope for the best.

“Covid Winter” is Coming: The Power of Humidity in our Return to Normal

As “Covid Winter” approaches, especially in states with seasonal changes such as New York, it calls into question what this will mean for the virus in the coming months. When thinking about when the pandemic will end, temperature, humidity, and seasonal shifts are large factors which work against stopping the spread of the virus. Externally, as the air outside becomes colder, it is able to hold less water vapor, which decreases humidity. HVAC (heating, ventilation, and air conditioning) units inside office buildings work by taking in outside air and heating it to channel through the indoor space, which similarly dries the air out. 

Why is humidity important in preventing the spread of the virus on a biological level? In an aerosol study conducted at Virginia Tech, the researches demonstrated that as humidity levels decrease, the particles of moisture released from actions such as talking, coughing, sneezing become smaller. This becomes a problem because the dry air causes the water in the molecules to evaporate faster, therefore becoming even smaller and staying in the surrounding air for a longer period of time. Any droplets can then travel around the closed, indoor space further. Their minuscule size allows them to be inhaled and move deeper into the lungs, where, as we learned in the video we watched in class, a spike on the virus will insert into a receptor molecule on a healthy cell membrane, allowing it to infect the healthy lung cell, leading to a susceptible person contracting COVID-19 and being able the virus further.

Other coronaviruses, like the common cold, influenza, and rhinoviruses, have exhibited similar spreading patterns dictated by the seasons, demonstrated by flu season occurring in the winter, calming down in summer, and coming back again in fall. Scientists believe COVID-19 could do the same, and are currently conducting research and gathering data to see the correlation between the virus and humidity levels. Stephanie Taylor, a physician and fellow at Har-

An example of how the virus remains in the air after released through talking, singing, etc

vard Medical School, is part of a joint study with the Massachusetts Institute of Technology that “found that the most powerful correlation between national numbers of daily new coronavirus cases and daily Covid-19 deaths was indoor relative humidity.” In reflecting upon their findings, she says that humidity “is so powerful, it’s crazy.” 

The only way to know exactly how the coming winter months will affect the spread of the virus is through time and observation, but it is interesting to look at the biological processes and movement of particles in relation to humidity to understand how the virus may have an increased spread as it becomes colder. I also feel this background helps us be able to make intelligent, informed decisions about the risk of social gatherings as it becomes harder to stay outdoors and the weather changes. What do you think is lying ahead in “Covid Winter?” Do you think we will inevitably have to wait until the humidity changes in spring to declare an official end to the pandemic? 

 

Protecting Ourselves Against COVID-19

How does COVID-19 spread?

According to this article by the CDC, there are two main ways the coronavirus spreads:

  • The inhalation/exchange of respiratory emissions from:
    • Coughing/Sneezing
    • Talking/Singing
    • Breathing
  • Touching a surface with the virus on it and (without washing hands) touching:
    • Eyes
    • Nose
    • Mouth

 

Preventing the spread of COVID-19

An article (source article) from Harvard Medical School explains everything you need to know about preventing the spread of the virus. Below is a summary of how to contribute to the prevention of the spread of the virus.

 

Protecting yourself and others:

In order to protect yourself and others from the coronavirus, you should avoid those who are infected and others if you are infected, wash your hands frequently with soap and water, avoid touching your eyes, nose, and mouth with unwashed hands, and disinfect objects that are frequently touched daily. You should also minimize travel and time spent in crowds/close quarters.

 

Washing your hands:

Whenever your hands are dirty (ex: after using the bathroom) or are going to be near your face (ex: before eating a meal), wash them with soap and water for at least 20 seconds. If you are unable to wash your hands during these times, sanitize with alcohol-based hand sanitizer. A guide for washing hands, created by the CDC, explains how to properly wash your hands in five simple steps:

  1. Run your hands under clean water until sufficiently wet, then acquire soap
  2. Rub the soap around the whole surface of your hand, between every finger, underneath every nail, etc.
  3. Keep doing this for at least 20 seconds
  4. Rinse off all the soap under clean water
  5. Dry your hands on a clean drying surface or let them air dry

 

Social Distancing:

Social distancing is when in social settings, people maintain a distance of at least 6 feet between each person. This is crucial for at least slowing down the rate of infected people, providing hospitals more time and resources to take care of infected people without being overwhelmed by a large number of patients. It’s important to note that just social distancing is not enough to prevent the spread of the virus, as respiratory emissions may linger and travel more than 6 feet when airborne. Make sure to also wear a mask and avoid the indoors and areas without air circulation while with other people.

 

Essential resources:

When grocery shopping, make sure to buy a lot of nonperishable goods to keep in case of an emergency. Make sure to wear a mask when going out, as masks prevent the spread of respiratory emissions and help prevent hands from touching faces. Wipe down surfaces such as carts and baskets before using and make sure to wash your hands after using. If you’re part of an increased risk group, try to avoid going out as much as possible.

 

Minimally useful measures:

Some individuals decide to take extra precautionary measures, but they are unnecessary for the most part. Some of these include wearing gloves and quarantining mail. In situations like these, just make sure to wash your hands after handling potentially infected objects, other measures do not help significantly.

 

Masks:

Wear a mask! The most common way the virus spreads is, as stated before, through respiratory emissions. Wearing a mask prevents these emissions from traveling throughout the environment. Even asymptomatic people may carry/spread the virus, so it is important to wear a mask no matter what. Masks should fit tightly and be worn properly, completely covering the mouth and nose. Masks are not supposed to be an alternative to the other methods of prevention but should be used in addition to the other methods.

 

Infants/Toddlers:

There is an alarming amount of young children put at risk from improper/a lack of safety measures. This article from kidshealth.org explains how to properly protect children under the age of 2 from COVID-19. First of all, babies should not wear masks. This is because since their airways are extremely small, they will have a hard time breathing and may suffocate in a mask. They may also touch their face more frequently in attempts to remove the mask, increasing their risk of infection. Since they can’t wear masks, it is important to avoid going out in public with them if possible. If unavoidable, make sure to wash or sanitize your hands before handling them and put them in a stroller with a covering.

 

An analogy based on cells and membranes:

A simple way to think about it is as if the human body were a cell. The skin is like a cell membrane and the eyes, nose, and mouth are like channels in the membrane. Wearing a mask is like closing the channels in order to keep substances out. Being in a large group of people is similar to a cell in a hypotonic solution, making it more likely for the virus to “diffuse” into your body. Socially distancing is slightly similar to a cell in a hypertonic solution, for this makes it less likely for the virus to flow into the body. To sum up, just make sure to make smart decisions, wash your hands, maintain social distancing, and wear a mask. Following these guidelines will help us protect each other until the virus is no more.

Page 1 of 2

Powered by WordPress & Theme by Anders Norén

Skip to toolbar