Since its emergence in the Fall of 2020, the original SARS-CoV-2 variant of concern (VOC) rapidly became the dominant lineage across much of Europe. Although, simultaneously, several other variants of concern were identified globally. Like B.1.1.7 or the Alpha Variant (first mutation of SARS-CoV-2 found to be more transmissible), these VOCs possess mutations thought to create only partial immunity.

Researchers are understanding when and how these additional VOCs pose a threat in settings where B.1.1.7 is currently dominant. This is where scientists in the UK examined trends in the prevalence of non-B.1.1.7 lineages in London and other English regions using passive-case detection PCR data, cross-sectional community infection surveys, genomic surveillance, and wastewater monitoring. The study period spanned from January 31st of 2021 to May 15th of 2021.

Through this data, the percentage of non-B.1.1.7 variants has been increasing since late March 2021. This increase was initially driven by a variety of lineages with immune escape. From mid-April, B.1.617.2 (WHO label of Delta) spread rapidly, becoming the dominant variant in England by late May, similarly to the Alpha Variant.

Shown by many mutations in the spike protein receptor (RBD), studies suggest B.1.1.7 is 50–80% more transmissible with greater severity than previously circulating Covid Variants. B.1.1.7 rose rapidly, from near 0% to over 50% in under two months, and soon made up greater than 98% of sequenced samples in England. Its rapid spread necessitated a third lockdown in England during last January. Subsequent spread in Europe and North America has highlighted the threat this variant poses to a continued alteration of the Coronavirus.

The 69–70 deletion in B.1.1.7′s Spike gene causes PCR tests to return negative results for that gene target which is a major problem when identifying and testing for Covid. One of the most important changes in lineage of B.1.1.7 seems to be a spike protein substitution of N501Y, a change from asparagine to tyrosine in amino-acid position, that enhances transmission. These alterations can change antibody recognition while also affecting ACE2’s (receptor protein) binding specificity which can then lead to the virus becoming more infectious. We are seeing a pattern of the same type of mutation in Covid consistently.

An example of a similar mutation that has been recent is the new Omicron variant out of South Africa. Omicron is similar in which their has been a specific change in the spike protein where antibody recognition is limited and it is highly transmissible between any living organism. Our class has understood and studied the importance of our body being able to identify and create an antibody for the specific antigen being displayed by a pathogen.  These mutations within the spike protein allow another immune response to happen which a different antibody has to be created to mark the different antigen being displayed. Unfortunately, this will be a continuing problem without vaccine mandates since it gives the virus more time to mutate where outbreaks like in South Africa will continue to transpire around the world.

Print Friendly, PDF & Email