BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: science (Page 1 of 3)

Newly Discovered Neurons and Their Role in Maintaining Normal Body Temperature

The internal body temperature in humans and mammals is maintained at 37℃/96℉, unless disrupted by a force like an illness or heat exhaustion. Regulating the body to stay in the normal range is crucial for survival and for enzyme function.  Our internal body temperature is constantly being regulated by our hypothalamus, located at the base of our brain. The hypothalamus uses sensors from a mediator known as prostaglandin E which is brought about when an infection is present in the body. After PGE2 is present, it signals for the body to raise its temperature and combat the infection. If temperature levels are abnormal, the enzymes in our body have trouble functioning because they need specific temperature conditions to carry out reactions. Therefore, maintaining homeostasis throughout the body by regulating internal temperature is key to human survival.

Prostaglandin E

A team of researchers at Nagoya University in Japan were inspired by this process and decided to focus on the unknown neurons that make up the receptors of PGE2 and how this regulation process functions. The group of professors and colleagues successfully discovered key neurons that work to regulate the body temperature of mammals. This finding can be highly useful for creating future technology that can artificially fix body temperature related conditions such as hypothermia, heat stroke, and obesity.  

Neuron

Neuron

By using rats as a subject for their research, they exposed the rats to cold (4°C), room (24°C) and hot (36°C) temperatures to observe the effect of temperature changes on EP3 neuron response. After conducting the experiment, the researchers were able to conclude that exposure to the hot temperature led to an activation of EP3 neurons and the cold temperatures did not. Once they made this conclusion, they dug deeper into the neurons and analyzed the nerve fibers of the neurons to discover where the signal transmission occurs after sensing an infection. The researchers were able to conclude that the neuron fibers are spread out in different areas of the brain, mainly the dosomedial hypothalmus, which works to activate the sympathetic nervous system. Not only did they discover these fibers, but they also discovered the substance that EP3 neurons utilize to send signals to DMH. By observing the structure and chemical makeup, they found that this substance is a neurotransmitter known as gamma-aminobutyric acid (GABA), which inhibits neuron excitation. 

Finally, their findings support the idea that EP3 neurons are a major component of regulating internal body temperature and that they send out the GABA substance to signal to DMH neurons for a proper response. Their research proves that intiating a neural response decreases body temperature and inhibiting neurons leads to an increase in body temperature. Furthermore, their strong research in this area can support future development of advanced technology that will be capable of artificially adjusting internal body temperature. The anticipated technology could help prevent hypothermia, treat obesity to keep body temperature slightly higher and initiate fat burning, and be a key method of survival in hot environments. 

 

Ballerinas Got the Brains!

A 2013 research article conducted by scientists at the Imperial College of London has dived into the ballet world and researched the brains of ballerinas. Their research led to the discovery that dancers can suppress signals of dizziness using the balance organs of the inner ear. The vestibular system, found in the inner ear, consists mainly of smaller circular canals. Each canal recognizes different motions: Up and Down, Side to side, and tilting. These canals are filled with hair and liquid which move with your body to send signals to the brain using the acoustic nerve. With this information, your brain can process balance, dizziness, and vertigo. These researchers became curious about how ballet dancers can perform multiple balanced pirouettes without feelings of dizziness. And as a dancer, I would say this is because of the technique of spotting which involves rapidly moving the head to keep one’s eyes on a fixed spot.

However, this study has proved that wrong. So, with the help of 29 ballet dancers and 20 rowers, the researchers put it to the test. Their method of testing involved putting the volunteers in a dark room and spinning them on a rotating chair. They then timed how long it took for the dizziness to stop. In addition, the researchers measure eye reflexes triggered by the vestibular organs and later completed MRI scans of the patient’s brain structure. The data they collected showed that the eye reflexes and perception of spinning lasted a shorter time with the dancers than with the rowers.

From this point, doctors wondered how they could transfer this ability to their patients. After taking an in-depth look at the dancer’s brains it was concluded that the cerebral cortex and cerebellum were the most affected. The cerebral cortex is found in the largest part of the brain and is responsible for speech, judgment, thinking and reasoning, problem-solving, emotions, learning, and the senses. While the cerebellumMajor parts of the brain, a fist-sized portion found in the back of the brain, uses neurons to coordinate voluntary muscle movements and to maintain posture, balance ,and equilibrium. In the AP Biology curriculum, learning the nervous system helps in one’s understanding of transport and membranes. The nervous system sends signals across the plasma membrane of a cell to the brain. With this signal, the cerebellum and cerebral cortex can process information and signal parts of the body to move. From looking at the MRI scans, scientists discovered that the dancer’s cerebellum was smaller. Scientists believed dancers would be better off not using their vestibular system and solely relying on “highly coordinated pre-programmed movements”. Scientists believe it is not necessary for dancers to feel dizziness so, their brains adapted to suppress that feeling. As a result, the signal that goes to the cerebral cortex is reduced. So, if scientists and doctors monitor the cerebral cortex they could begin to understand how to treat patients affected by chronic dizziness.

 

 

NMT5: A New Enemy To SARS-CoV-2?

In the past few months, scientists in the United States have developed a potential new antiviral to SARS-CoV-2.   The drug, called NMT5, is effective against several variants of SARS-CoV-2, the virus that sent the planet into lockdown only a few years ago.

As stated in the journal Nature Chemical Biology, NMT5 coats SARS-CoV-2 particles as they travel through the body.  Thus, when the virus attempts to attach to the ACE2 receptor proteins of the cell, NMT5 attaches first.  The drug changes the shape of the cell’s receptor upon attachment, which makes it harder for SARS-CoV-2 to infect the cell, and on a larger scale, the organism’s body.

In order to ensure that the drug isn’t toxic, researchers tested NMT5 on healthy cells.  According to the National Institute Of Health, it was “found that NMT5 was non-toxic and only changed receptors that were being targeted by the virus. These effects lasted for only about 12 hours, meaning the receptors functioned normally before and after treatment”.  In fact, in an experiment that used hamsters as models for the human immune system, NMT5 reduced SARS-CoV-2’s ability to bond to ACE2 receptors by 95%!

A significant reason NMT5 is so effective is that it not only limits one particle of SARS-CoV-2, but the effectiveness of the virus as a whole, when present. When a SARS-CoV-2 particle with NMT5 attaches to an ACE2 receptor, it adds a nitro group to the receptor, which limits the ability of the particle to attach to the receptor for 12 hours by changing the receptor’s shape.  Thus, no COVID-19 particle can attach to the ACE2 receptor – even ones that haven’t been surrounded by NMT5.  Stuart Lipton, a professor at The Scripps Research Institute, states that “what’s so neat about [NMT5] is that we’re actually turning [SARS-CoV-2} against itself”, as particles surrounded by NMT5 serve to limit the ability of other SARS-CoV-2 particles.  The drug has excited scientists studying SARS-CoV-2 around the world, as they have “realized [NMT5] could turn the virus into a delivery vehicle for its own demise” (PTI, The Tribune India).

Cell reception and signaling are incredibly important to both viruses and the human immune system.  A virus works by infiltrating a cell through cell receptors that line the outside of the desired cell’s phospholipid bilayer.  Viruses attach to these receptors and infect the cell as a result.  SARS-CoV-2’s process is depicted below, as it attaches to the ACE2 receptors described earlier.  The immune system works by recognizing the virus at hand and signaling B-Lymphocytes and T-Lymphocytes to destroy the virus and infected cells.  B-Plasma cells surround the virus, as shown below, which neutralize it and allow it to be engulfed and destroyed by macrophages.  Cytotoxic T-cells kill cells already infected by the virus.  Both B and T Lymphocytes are activated as a result of T-Helper cells, as T-Helper recognize the virus when a piece of it is displayed at the end of a macrophage, and signal the Lymphcytes by releasing cytokines (another example of cell reception and signaling).  This process is all shown in the image below, with the specific virus depicted being SARS-CoV-2.

Fphar-11-00937-g001

However, NMT5 prevents the initial infection from happening when SARS-CoV-2 enters the human body by bonding with SARs-CoV-2 particles before they attach to cells, which allows for the immune system to quickly destroy the virus.  By blocking SARS-CoV-2’s access to receptors, the drug stops the particle before it can infect a cell and do any damage. Since cell receptors are specifically shaped, and any change in form results in a loss of normal function, the ensuing change in shape of a receptor limits any SARS-CoV-2 particle from attaching to said receptor, further limiting the virus’s damage by blocking cell reception from occurring. Thus, the immune system kills the virus without major symptoms.

All in all, the development of NMT5 is exciting for scientists all around the globe.  If it is as effective as studies show, it could play a major role in limiting the effects of SARS-CoV-2.  Hopefully, all goes well, and you should be hearing a lot more about the drug sometime soon.

If you have any updates or questions on NMT5, I invite you to share them in the comments below.  Thank you for reading my blog post, and stay curious!

Is the recently discovered hidden cavity on the SARS-CoV-2 protein a target for drugs?

Many of us have been vaccinated against COVID-19 and have had the virus, leading us to become used to the virus being prevalent in our lives during the past few years. Even though a successful vaccine has been rolling out for a while now, new therapies have not yet been discovered for future strains. Finding new therapies for the virus remains a major priority in the field of science, even if many of us have been protected already. This issue remains a priority because new variants and strains have been continuing to emerge, and some resist present therapy mechanisms.

SARS-CoV-2

The most effective approach to attempting to combat the virus is addressing the proteins on the surface of therapeutic targets, known as spike proteins. The spike protein (S proteins) located on the surface of the virus leads to its spiky protrusions, and its mechanism to enter human cells. Like we learned in AP Biology class, the spike proteins of the virus latch to cells by matching with a specific receptor on a cell’s surface. The spike proteins of the virus have to latch on to the new cell to infect. Successful messenger RNA vaccines properly target this spike protein, which is the main goal when creating new therapies for viruses. 

                                             Spiky appearance of SARS CoV-2 virus

Luigi Gervasio, a chemistry and structural/molecular biology professor at University College London, and his team have been working towards addressing this issue. By partnering with the University of Barcelona’s research team, the two teams took the first steps to discover a possible mechanism for future drugs to detect and protect against the SARS CoV-2 Virus. Through thorough research and investigation, they uncovered a “hidden” cavity on the surface of a prominent infectious agent of the virus known as Nsp1. The team was able to make this discovery by testing small molecules that had the potential to bind to the Nsp1 cavity. The team identified one, 5 acetylaminoindane, which is essential for the development of new drugs against viruses. They concluded that this cavity permitted the calculation of the cavity’s atomically spatial arrangement, which will allow the development of these drugs.

The results of their breakthrough findings set the stage for developing new therapies that will be able to target the NSp1 protein against SARS-CoV-2 and present Nsp1 proteins in future coronavirus strains. Not only will this finding be impactful for targeting SARS-CoV-2 and future variants, but also new cavities on the surface of other proteins that have yet to be found by scientists. Finally, this research is monumental for both SARS-CoV-2 and virus treatment in years to come!  

 

The Science Of Addiction

Overview of the brain

There are three main parts of the brain: the cerebrum, the cerebellum, and the brain stem. The cerebrum controls most of our functions such as movements, thoughts, and even our senses. The cerebrum is roughly two-thirds of the brain as a whole and is divided into four lobes: the frontal, parietal, temporal, and occipital. These lobes control emotions, pain receptors, hearing, vision, and more. Second, the cerebellum is located right behind and a little below the cerebrum, and controls most of our motor functions. Finally, the brain stem is the smallest portion of the brain, sitting beneath the cerebrum and in front of the cerebellum. The brain stem controls both breathing and heart rate, making it just as important as the other parts of the brain regardless of its small size.

Diagram of the brain. Wellcome L0008294

Addiction 

Abusive drugs increase the amount of dopamine in the brain which is produced by the brain stem. Often brain activity that would often be seen from a simple social interaction or through eating food will be seen after addictive drugs are consumed, but the activity will be much more powerful and persistent, leading to the addiction. The brain recognizes the pleasure the drug may grant the user and this numbs the user, over time, to natural releases of dopamine. Further, a study conducted on mice proved that the prefrontal cortex controls social behavior and as social behavior is affected by addiction, one of the major parts of the brain is damaged by drug use.

Connection to biology

The original article articulates how drugs of abuse target circuits in the brain and affect how the reward centers are damaged by drug use. Further, the article focuses on how cortisol levels can affect how quickly a person can recover from an addiction. This is important for addiction research as recovery windows will be more accurate if doctors can test how much cortisol a person has. However, this is not nearly as important as the study of the effects drugs have on our brains. This connects to our biology class so far this year as the plants we’ve been experimenting on in the lab have been watered daily. However, if we suddenly just decided to stop watering them the plants would have the same reaction as someone who was addicted to drugs being cut off: yearning for what was taken from them. In the same way that plants depend on water, a drug addiction makes the addict depend on the drug for functionality as the person’s brain is so damaged that it can no longer produce dopamine without synthetic production through drugs.

Smilies for Article Feed Back

 

Know Someone addicted to Opioids or Painkiller? This Biomedical Advancement May Be Able to Help.

First and foremost, the opioid crisis effects Americans nationwide. The United States is facing a major health crisis that rarely is even mentioned on the news. In the last 20 years(1999-2020) National overdose deaths involving any opioid have risen by more than a factor of six. Nearly 70,000 Americans died in 2020 rising by over 44% since just 2017. Whether given after a major surgery or sports injury, the addictive nature of opioids combined with the difficult side effects have left researchers looking for a better solution.

The general goal for this research was to target different receptors in the cell to do away with the harmful side effects of opioids. An international team of researchers led by the Chair of Pharmaceutical Chemistry at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) are “focusing particularly on the molecular structures of the receptors that dock onto the pharmaceutical substances”. In short, they are looking to activate adrenaline receptors instead of opioid receptors.

Researchers looked at the central nervous system to discover receptors in cells that lacked the sedative effect. While many of these adrenaline receptors are involved in pain processing, few have been cleared for use in therapies. This is where a team of researchers from Erlangen, China turned their attention to the adrenaline producing alpha 2A adrenergic receptor. One problem is that the analgesics that target the alpha 2A receptor produce a strong sedative effect. Gmeiner, one of the researchers, quotes “Dexmedetomidine(an analgesic) relieves pain, but has a strong sedative effect, which means its use is restricted to intensive care in hospital settings and is not suitable for broader patient groups”.

The goal for the researchers was to separate the sedative effect from the adrenaline receptors to ensure that this therapy could be used on a wider scale. Through the use of extremely high-resolution cryo-electron microscopic imaging, researchers were able to develop agonists that like Dexmedetomidine send large amounts of adrenaline to the brain thus, revealing  the sensation of pain very well. But, the real development was the “fact that none of the new compounds caused sedation, even at considerably higher doses than those that would be required for pain relief.”

In AP Biology, we have looked at the active transport of molecules through the phospholipid bilayer of the cell. Using ATP energy, cells in your body are able to move particles from a high concentration outside the cell to a lower concentration inside the cell. One process cells use to move these particles is Receptor Mediated Endocytosis. Specific ligands (ions, small molecules, or proteins) bind to a coated pit in the receptor while the receptor matches the ligands shape. Next, the ligands pass through the phospholipid bilayer and are put into a coated vesicle to be transported around the cell. A similar process takes place when receptors receive pain relieving drugs.

The prospect of removing the addictive and violent side effects of opioid use through the use of adrenaline receptors sounds promising, but it is important to keep in mind that this is still just research in the lab. With enough funding and time, the possibility of saving thousands of lives by developing non-opioid pain medication is a very exciting advancement and worth the investment.

Can Reactive Oxygen Species Maintain Stem Cell Function and Prevent Inflammation?

Have you ever wondered what “gut health” really means? What keeps your gut microbiome functioning properly, maintaining homeostasis, and preventing inflammation? Originating from oxygen, reactive oxygen species (ROS) that are highly reactive function as central indicators of cellular flaws and issues in the body, such as inflammation. Nai-Yun Hsu of Mount Sinai has stated that “Reactive oxygen species released by stem cells are critical in maintaining a heathy gut via maintaining proper balance of intestine barrier cell types.”

File:Inflammatory Bowel Disease MTK.jpg 

A team of researchers from the Ichan School of Medicine at Mount Sinai have gone in depth about the importance of these oxygen species for stem cell function, avoiding inflammation, and repairing wounds in a recent study. Using mice as models, the researchers were also able to conclude that microfold cells, called “m cells” regulate an organism’s gut immune response, and emerged from a loss of ROS in mice and humans. 

 

The experiment was conducted in vino and in vitro conditions with the mice cells, and ex vivo conditions with human intestinal biopsies post-colonoscopy. Both the human intestinal biopsies and mouse cells were utilized to determine the amount of ROS in the body to support a finding. In addition to determining the amount of the oxygen species, the biopsies and mice were used to analyze the “gene expression profile” of barrier cells in intestines of mice and humans that are diagnosed with a “subtype of IBD known as ulcerative colitis.”  

 

A decrease in these oxygen species can lead to TNF’s emergence in the body, which is a substance that attempts to maintain homeostasis in the body and avoid inflammatory diseases, like IBD and ulcerative colitis. They have concluded that losing species like NOX1, a protein that creates these species, is directly linked with inflammatory diseases like Inflammatory Bowel Disease (IBD). Judy H. Cho, MD, has stated that the study is a breakthrough “in defining the key role of oxygen species in maintaining a healthy epithelial barrier for IBD.” These reactive oxygen species are relevant to AP Bio considering the information we have learned about general biological systems and cells, which function to maintain homeostasis in the body. The mitochondria, which is an organelle of the cell covered in AP Bio, receives signals from gut bacteria that reveals inflammation. While the mitochondria is typically known as the site of cell respiration and performing reactions, new evidence has shown a relationship between the gut microbiota and mitochondria to trigger immune responses and activate barrier cell function. These processes relate to changes to the mitochondria that occur from gut-related issues in IBD patients, meaning that there is a connection to ROS. 

undefined

Gut Microbiota

As a conclusion to proving the direct link between the highly reactive oxygen species and treating inflammation, these researchers encourage and plan to conduct further study on this topic, but for using “oxygen species-stem cell modulation therapy” to potentially treat IBD patients. 

 

 

CRISPR Gene Editing: The Future of Food?

Biology class has taught me a lot about genes and DNA – I know genes code for certain traits, DNA is the code that makes up genes, and that genes are found on chromosomes. I could even tell two parents, with enough information, the probabilities of different eye colors in their children! However, even with all this information, when I first heard “gene editing technology,” I thought, “parents editing what their children will look like,” and while this may be encapsulated in the CRISPR gene editing technology, it is far from its purpose! So, if you’re like me when I first started my CRISPR research, you have a lot to learn! Let’s dive right in!

CRISPR

Firstly, what is CRISPR Gene Editing? It is a genetic engineering technique that “edits genes by precisely cutting DNA and then letting natural DNA repair processes to take over” (http://www.crisprtx.com/gene-editing/crispr-cas9).  Depending on the cut of DNA, three different genetic edits can occur: if a single cut in the DNA is made, a gene can be inactivated; if two separate DNA sites are cut, the middle part of DNA will be deleted, and the separate cuts will join together; and if the same two separate pieces of DNA are cut, but a DNA template is added, the middle part of DNA that would have been deleted can either be corrected or completely replaced. This technology allows for endless possibilities of advancements, from reducing toxic protein to fighting cancer, due to the countless ways it can be applied. Check out this link for some other incredible ways to apply CRISPR technology!

In this blog post however, we will focus on my favorite topic, food! Just a few months ago, the first CRISPR gene-edited food went on the market! In Japan, Sicilian Rouge tomatoes are now being sold after the Tokyo-based company, Sanatech Seed, edited them to contain an increased amount of y-aminobutyric acid (GABA). “GABA is an amino acid and neurotransmitter that blocks impulses between nerve cells in the brain” (https://www.scientificamerican.com/article/crispr-edited-tomatoes-are-supposed-to-help-you-chill-out/). It supposedly (there is scarce scientific evidence of its role as a health supplement) lowers blood pressure and promotes relaxation. In the past, bioengineers have used CRISPR technology to “develop non-browning mushrooms, drought-tolerant soybeans and a host of other creative traits in plants,” but this is the first time the creation is being sold to consumers on the market (https://www.scientificamerican.com/article/crispr-edited-tomatoes-are-supposed-to-help-you-chill-out/)!

Tomatoes

So, how did Sanatech Seed do it? They took the gene editing approach of disabling a gene with the first method described above, making a single cut in the DNA. By doing so, Sanatech’s researchers inactivated the gene that “encodes calmodulin-binding domain (CaMBD)” in order to increase the “activity of the enzyme glutamic acid decarboxylase, which catalyzes the decarboxylation of glutamate to GABA, thus raising levels of the molecule” (https://www.scientificamerican.com/article/crispr-edited-tomatoes-are-supposed-to-help-you-chill-out/). These may seem like big words, but we know from biology that enzymes speed up reactions and decarboxylation is the removal of carbon dioxide from organic acids so you are already familiar with most of the vocabulary! Essentially, bioengineers made a single cut in DNA inside of the GABA shunt (a metabolic pathway) using CRISPR technology. They were therefore able to disable the gene that encodes the protein CaMBD, and by disabling this gene a certain enzyme (glutamic acid decarboxylase) that helps create GABA from glutamate, was stimulated. Thus, more activity of the enzyme that catalyzes the reaction of glutamate to GABA means more GABA! If you are still a little confused, check out this article to read more about how glutamate becomes GABA which will help you better understand this whole process – I know it can be hard to grasp!

After reading all of this research, I am sure you are wondering if you will soon see more CRISPR-edited food come onto the market! The answer is, it depends on where you are asking from! Bioengineered crops are already hard to sell – many countries have regulations against such food and restrictions about what traits can actually be altered in food. Currently, there are some nutritionally enhanced food on the market like soybeans and canola, and many genetically modified organisms (GMOs), but no other genome-edited ones! The US, Brazil, Argentina, and Australia have “repeatedly ruled that genome-edited crops fall outside of its purview” and “Europe has essentially banned genome-edited foods” (https://www.scientificamerican.com/article/crispr-edited-tomatoes-are-supposed-to-help-you-chill-out/). However, if you are in Japan, where the tomatoes are currently being sold, expect to see many more genome edited foods! I know I am now hoping to take a trip to Japan soon!

Thank you so much for reading! If you have any questions, please ask them below!

How to Keep Your New Year’s Resolutions: The Making and Breaking of Habits

What is a habit? A habit is “a behavior pattern acquired by frequent repetition or physiologic exposure that shows itself in regularity or increased facility of performance“ (Merriam-Webster). With this being the second month of 2022, New Year’s Resolutions are still in many people’s minds. February is statistically the time when individuals give up on their life-changing aspirations that the new-year inspired, “virtually every study tells us that around 80% of New Year’s resolutions will get abandoned around this month” (This Is The Month When New Year’s Resolutions Fail—Here’s How To Save Them). The “new year, new me” mindset is beginning to seem a little too hard to accomplish. If we can create habits that contribute to our new year’s resolutions, maybe they won’t seem so difficult. So, how can we make these resolutions into good habits and break existing bad ones?

New Years Resolutions

Habits are created through associative learning. Essentially, as you repeat a certain behavior in the same context, it becomes an automatic response rather than a thought-out action and that is when it is a habit. When this switch happens, that behavior/action moves from the intentional mind to the habitual mind. So, if we can intentionally make certain changes as a part of a resolution, we will eventually do them without thinking and maybe accomplish a resolution! 

Brain

Now, let’s look at some interesting science involved in the study of habits! Specifically, the dorsolateral striatum. This is a part of the brain that “experiences a short burst of activity” as the brain begins to create a new habit (Revving habits up and down, new insight into how the brain forms habits). As a habit becomes stronger and harder to break, this burst also intensifies. This was proved in an MIT study where rats were taught how to run in a maze and received a sugar pellet reward at the end. As we have learned in biology, neurons are nerve cells that send and receive signals. In fact, we know all about how these signals are transmitted! In this study, using optogenetics, scientists controlled the neurons in the dorsolateral striatum with light. “A flashing blue light excites the brain cells while a flashing yellow light inhibits the cells and shuts them down” (Science Daily). As the rats were running through the maze, if the neurons were excited, they ran faster and habitually, whereas when the flashing yellow light inhibited the cells, the rats slowed down and no longer knew where to go, making wrong turn after wrong turn. Senior author of the study Kyle S. Smith said, “Our findings illustrate how habits can be controlled in a tiny time window when they are first set in motion. The strength of the brain activity in this window determines whether the full behavior becomes a habit or not”. This shows us, it is fairly easy to form habits if you continue it repeatedly as the action first begins! While this can be good or bad, with the other information you will learn in this blog post, I hope that this is encouraging! 

In a recent study rewards were also shown to help form habits. This study explored how giving individuals in India a reward for washing their hands before dinner created good hand washing habits. “The study involved 2,943 households in 105 villages in the state of West Bengal between August 2015 and March 2017. All participants had access to soap and water. Nearly 80 percent said they knew soap killed germs, but initially only 14 percent reported using soap before eating” (Small bribes may help people build healthy handwashing habits). These households were divided into groups. Those that received a reward for washing their hands before dinner did 62% of the time, whereas those who did not receive a reward only washed their hands 36% of the time. This is a big difference! “Significantly, good habits lingered even after researchers stopped giving out rewards” (Small bribes may help people build healthy handwashing habits). Rewards helped create the habit, but once the habit was formed, it was automatic and even without the reward, the habit still took place! Now you may be wondering, why is this information relevant? Well, reward yourself! If your goal is to do one pull-up everyday, give yourself a piece of chocolate every time you do it and eventually you will not need any chocolate! 

So, based on this information, how can we break bad habits? First off, go to a new environment. Due to the fact that habits form from repeated behaviors in the same context, by changing our surroundings, it is much easier to not participate in that behavior. Secondly, repeat a new, replacement behavior over and over. For example, if your goal is to eat less pears, make it a habit to reach for an apple every time you walk into the kitchen. As we know, repetition forms habits! Lastly, keep this new environment and action consistent – don’t start reaching for a banana every time you get home if you have been reaching for an apple when you walk into the kitchen. In order to form a habit it is critical to repeat a certain behavior in the same context. 

Now, we can now create good habits and break the old bad ones! With this information, make this the year that you actually follow through on your new year’s resolutions! Don’t let this month stop you. You have the knowledge and resources, get to it! New year, new you! Good luck! If you have any questions, feel free to comment below!

New Years Resolution

How are new COVID variants identified?

COVID variants are of high concern for scientists studying the disease. Some variants can be more infectious or cause more severe illness. Additionally, some variants can evade vaccines by having different surface proteins than the variant the vaccine was created for. This causes the antibodies produced from the vaccine to be less effective against other variants. In AP Biology class we discussed how the Delta Variant, first identified in December 2020, has a different spike protein structure than the original virus from which the vaccine was created from. This allows the variant to be more infectious, and make the vaccine less effective against it. But, what are COVID variants? And how are they discovered? Hand with surgical latex gloves holding Coronavirus and A Variant of Concern text

COVID variants are “versions” of the virus with a different genetic code than the original one discovered. However, not every mutation leads to a new variant. This is because the genetic code of the virus codes for proteins. Some mutations will not change the structure of the protein and thus not change the virus. So, COVID variants can be defined as versions of the virus with a significantly different genetic code than the original virus.

To detect new COVID variants, scientists sequence the genetic code of virus which appears in positive COVID tests. Scientists look at the similarity of the genetic sequences they find. Then, if many of the sequences they get look very similar to each other, but different to any other known virus, a variant has been discovered.

To sequence the RNA of the virus, scientists use what is called Next Generation Sequencing (NGS). To understand how NGS works, it is best to start with what is called Sanger Sequencing. Sanger Sequencing utilizes a modified PCR reaction called chain-termination PCR to generate DNA or RNA fragments of varying length. The ending nucleotide of each sequence is called a ddNTP, which contains a florescent die corresponding to the type of nucleotide. The addition of a ddNTP also terminates the copying of the particular sequence. The goal of this PCR reaction is to generate a fragment of every length from the start to the end of the sequence. The sequences can then be sorted by length using a specialized form of gel electrophoresis. The sequence is then read by using a laser to check the color of the fluorescent die at the end of each sequence. Based on the color and size, the nucleotide at that position of the genomic sequence can be found.

Sanger Sequencing Example

The difference with NGS is that many sequences can be done in parallel, allowing for very high throughput. In other words, with NGS many COVID tests can be sequenced in once.

The COVID-19 Vaccine: How, What, and Why

We have all seen the news lately – COVID, COVID, and more COVID! Should people get the vaccine? What about the booster shot? Are vaccines more harmful than COVID-19? Will my child have birth-defects? This blog post will (hopefully) answer most of your questions and clear up a very confusing topic of discussion!

Discovery of monoclonal antibodies that inhibit new coronavirus(Wuhan virus)

First off, what are some potential effects of COVID-19? They include, but are certainly not limited to, shortness of breath, joint pain, chest pain, loss of taste, fever, organ damage, blood clots, blood vessel problems, memory loss, hearing loss tinnitus, anosmia, attention disorder, and the list goes on. So, our next question naturally is: what are the common effects of the COVID-19 Vaccine? On the arm that an individual receives the vaccine the symptoms include pain, redness, and swelling. Throughout the body, tiredness, a headache, muscle pain, chills, fever, and nausea can be experienced. To me, these effects seem much less severe than COVID-19’s!

COVID-19 immunizations begin

Now that we have covered effects, you are probably wondering what exactly the COVID-19 Vaccine does – will it make it impossible for me to get COVID-19? Will I have superpowers? Well, you may not get superpowers, but your cells will certainly have a new weapon, which we will discuss in the next paragraph! The COVID-19 Vaccine reduces “the risk of COVID-19, including severe illness by 90 percent or more among people who are fully vaccinated,” reduces the overall spread of disease, and can “also provide protection against COVID-19 infections without symptoms” (asymptomatic cases) (Covid-19 Vaccines Work).

So, how does the vaccine work? Many people think that all vaccines send a small part of the disease into us so our cells learn how to fight it at a smaller scale. However, this is not the case with the COVID-19 vaccine! As we learned in biology class, COVID-19 Vaccines are mRNA vaccines which use mRNA (genetic material that tells our cells to produce proteins) wrapped in a layer of fat to attach to cells. This bubble of fat wrapped mRNA enters a dendritic cell through phagocytosis. Once inside of the cell, the fat falls off the mRNA and the strand is read by ribosomes (a protein maker) in the cytoplasm. A dendritic cell is a special part of the immune system because it is able to display epitopes on MHC proteins on its surface.

Corona-Virus

After being made by the ribosomes, pieces of the viral surface protein are displayed on the surface of the dendritic cell (specifically the MHC protein), and the cell travels to lymph nodes to show this surface protein. At the lymph nodes, it shows the epitope to other cells of the immune system including T-Helper Cells. The T-Helper Cells see what they’re dealing with and create an individualized response which they relay to T-Killer cells that attack and kill virus-infected cells. This individualized response is also stored in T-Memory cells so that if you do end up getting COVID-19, your body will already know how to fight it! The T-Helper Cells additionally gather B-Plasma cells to make antibodies that will keep COVID-19 from ever entering your cells. T-Helper Cells are amazing! As you can see, the vaccine never enters your nucleus, so it cannot effect your DNA! No birth-defects are possible!

You are now equipped with so much information and able to disregard many common misconceptions about the COVID-19 vaccine! Additionally, you can make an educated decision about whether or not you should get the vaccine. I think yes! If you have any questions, please feel free to comment them and I will answer. Thanks for reading!

 

LONG COVID

After the long sufferable weeks from catching COVID-19, you would think you are in the clear; until, that is, you feel some extra “health-issues”. The term for these health issues, specifically after COVID-19, are called Long Covid (post-covid). Generally “one in two [covid recovered people] experienced long-term COVID manifestations” and the symptoms included are a diverse field of sickness. Penn State investigators mentioned the trend of symptoms from 250,351 unvaccinated adults and children:

Loss of General Well Being (weight loss, fevers, fatigue)

Decreased Mobility (1 in 5 experienced a decrease in mobility)

Concentration Issues

Lung abnormalities (6 in 10 survivors tight chests and a quarter of patients had difficulty breathing)

Digestive Issues

What could be the reason that COVID-19 is still lurking around in our bodies when the sickness is gone? Researchers at Yale University studying long-COVID have found a pattern of patients having an “unusual level of cytokines” also known as a cytokine storm. Cytokines are a secreted chemical proteins released by cells for communication. In the Immune System process, after a Macrophage, large phagocytic cells, ingests an antigen it releases cytokines, signaling for a t-helper cell to come. After the helper t-cell recognizes the antigen, more cytokines are released and trigger the Cell-Mediated and Humoral Responses (B and T cells). I mention all this because researchers are saying that post-covid patients tend to have patterns of irregular, more-than average cytokines being produced as well as an “unusual pattern of activity by…t cells. The greater than average amount of cytokines suggests a “state of chronic inflammation” and “kill tissues and damage organs.” The unusual activity of t-cells suggests that COVID-19 could still be lurking in the body.

Cytokine Release

Cytokine release and the numerous amounts of it

The treatment for these conditions are mostly to take the vaccine but there are still many unknowns to this Long-Covid problem. These problems are mostly lying in the Immune System rather than other parts of the body that can be tested with machines; which is why solving this problem is very difficult. This problem can only be solved by a matter of time and hope the scientists can figure this out.

 

The Importance of Gut Health: How to Live Long and Be Happy

Gut health – why is it so important? I had always thought that the concept of good gut health was a myth and only lived on the side of a bottle of Kombucha. I could not have been more incorrect!Kombucha, Health-Ade,

It turns out that a happy gut is critical to live a long, happy, and healthy life! The gut, also known as the digestive tract or gastrointestinal track, includes the mouth, esophagus, stomach, small intestine, pancreas, liver, gallbladder, colon, and rectum. Therefore, it processes all of the nutrients you take in, fights diseases, serves as a center for communication, and produces hormones. These are all critical tasks that affect your everyday well-being!

202004 Gut microbiota

When thinking about gut health, scientists are usually referring to the gut microbiome. In short, the gut microbiome is all of the microbiomes in your intestines. Humans would have a very hard time surviving without the gut microbiome. It digests breast milk when babies are first born, controls the immune system, digests fiber, and even helps control brain health. In fact, a recent study done with mice suggests that gut health affects social interaction/behaviors, stress, anxiety, and autism spectrum disorder. Additionally, in 2011 another study was done with mice, which involved antibiotics killing “bad” gut bacteria, also known as, gut flora. These mice became scientifically less anxious after killing the gut flora and “showed [positive] changes in their brain chemistry that have been linked to depression”  according to Live Science.

Gut flora is not the same for everyone. Another study done with gut flora showed that obese individuals tend to have less diversity in their gut flora when compared to lean individuals. This difference is because of an increase in Firmicutes and decrease of Bacteroidetes in obese individuals. Gut flora also affects an individual’s metabolism because of its affects on the breakdown of a key organic compound we have learned about in biology, carbohydrates. As we know, carbohydrates provide energy for the body which is imperative for all individuals. Another subject we have discussed in our class, amino acids, can have an increase in production because of gut flora (Live Science).

Now, you may be wondering, “how can I keep my gut happy?” The key to a healthy gut comes from diet. After an extensive amount of research, here are some tips I have gathered and why they work:

  1. Eat a variety of foods – to keep your microbiome diverse (recommended to eat specifically a variety of fruits and vegetables for fiber, vitamins, and minerals)
    Fresh fruits and vegetables in 2020 06
  2. Eat fermented foods (ex. yogurt, kefir, kimchi, pickles, sauerkraut) – it “can reduce the amount of disease-causing species in the gut” (Healthline)Vegan yogurt, March 2012
  3. Eat nuts, seeds, and legumes for fiber and proteinNuts on Spice Bazaar in Istanbul 01
  4. Eat whole grains for dietary fiberHome made whole grain bread
  5. Eat prebiotic foods (ex. bananas, artichokes, apples, asparagus, oats, flax seeds, garlic, onions, broccoli) – to “help boost the population and diversity of good bacteria” (Orlando Health)29 Nov 2011 - Apples and BananasThree Onion in Peng Chau
  6. Limit antibiotics – they kill both good and bad bacteria in the gut, which decreases necessary varietyAntibiotic pills
  7. Take a probiotic supplement – it “can help restore the gut to a healthy state after dysbiosis” (Healthline)Red and blue pill

These are all relatively small changes for the huge benefits that they reap. Start incorporating them today to improve your gut health and live a longer, happier, and overall healthier life!

 

Mutation in the Nation

We constantly think of SARS-CoV-2, the virus that causes COVID-19, as a single virus, one enemy that we all need to work together to fight against. However, the reality of the situation is the SARS-CoV-2, like many other viruses, is constantly mutating. Throughout the last year, over 100,000 SARS-CoV-2 genomes have been studied by scientists around the globe. And while when we hear the word mutation, we imagine a major change to how an organism functions, a mutation is just a change in the genome. The changes normally change little to nothing about how the actual virus functions. While the changes are happening all the time since the virus is always replicating, two viruses from anywhere in the world normally only differ by 10 letters in the genome. This means that the virus we called SARS-CoV-2 is not actually one species, but is a quasi-species of several different genetic variants of the original Wuhan-1 genome.

The most notable mutation that has occurred in SARS-CoV-2 swapped a single amino acid in the SARS-CoV-2 spike protein. This caused SARS-CoV-2 to become significantly more infective, but not more severe. It has caused the R0 of the virus, the number of people an infected person will spread to, to go up. This value is a key number in determining how many people will be infected during an outbreak, and what measures must be taken to mitigate the spread. This mutation is now found in 80% of SARS-CoV-2 genomes, making it the most common mutation in every infection.

Glycoproteins are proteins that have an oligosaccharide chain connect to them. They serve a number of purposes in a wide variety of organisms, one of the main ones being the ability to identify cells of the same organism.  The spike protein is a glycoprotein that is found on the phospholipid bilayer of SARS-CoV-2 and it is the main tool utilized in infecting the body. The spike protein is used to bind to host cells, so the bilayers of the virus fuse with the cell, injecting the virus’s genetic material into the cell. This is why a mutation that makes the spike protein more efficient in binding to host cells can be so detrimental to stopping the virus.

In my opinion, I find mutations to be fascinating and terrifying. The idea that the change of one letter in the sequence of 30,000 letters in the SARS-CoV-2 genome can have a drastic effect on how the virus works is awfully daunting. However, SARS-CoV-2 is mutating fairly slowly in comparison to other viruses, and with vaccines rolling out, these mutations start to seem much less scary by the day.

 

Do Birds Think Like Us?

Contrary to popular belief, a bird’s brain is indeed intelligent. Pigeons are able to identify the painting of Picasso and Monet, with training and ravens are able to identify themselves in a mirror. For a long time, it was believed that bird brains are not complex, however, according to an article from Scientific American, recently it has been discovered that bird brains have many similarities to the brains of mammals. 

The neocortex is the outer layer of the brain that allows cognition and creativity, in mammals. Although the brains of birds hold a different shape, new research can compare their structure to the neocortex in mammals. It is found that the layout of the brain is similar to humans, explaining their advanced behavior and abilities. Originally, it was believed that avian brains were a  group of neurons located in a region known as DVR, and an individual nucleus called the wulst, whereas mammal brains consist of six layers with columns of neurons that transfer information horizontally and vertically. These clusters of neurons, each contained a nucleus which ultimately allows for the production of proteins in the cell. However, In a study done by, senior author Onur Güntürkün, a neuroscientist at Ruhr University Bochum in Germany, along with his colleagues they discovered that, ”in both pigeons and barn owls, these brain regions are constructed much like our neocortex, with both layerlike and columnar organization—and with both horizontal and vertical circuitry” (Stetka). This research rejects the once accepted understanding of avian brains. Additionally, “We can now claim that this layered, corticallike organization is indeed a feature of the whole sensory forebrain in most, if not all, birds,” says Martin Stacho, co-lead author of the study and Güntürkün’s colleague at Ruhr University Bochum. Ultimately, it is confirmed that the DVR of avion brains is related to the cortex of mammal brain, thus explaining many of birds unique abilities. Although this theory was suggested by Harvey Karten in the 60s, it was not supported, but new this research credits Kartens hypothesis

This new discovery raises more questions of the possibility of sensory consciousness in avian brains and ancient animal brain evolution. The latest common ancestor of birds and mammals are reptiles, from 320 million years ago, and its brain is believed, “it wasn’t like the neocortex or the DVR. It was probably something in between that, in mammals, developed a six-layered neocortex and, in birds, to the wulst and DVR”, said Martin Stacho.

 

With the current discoveries on bird brains, new possibilities are being researched and many scientist are realizing that our brains may hold more similarities to different animals than previously believed.

 

 

Is Air Pollution Exposure In Childhood Linked To Schizophrenia?

Research has shown that pollution affects physical health, but does air pollution also affect our psychological health? A study, which combines genetic data from iPSYCH with air pollution data from the Department of Environmental Science, reveals that children who are exposed to a high level of air pollution while growing up have an increased risk of developing schizophrenia.

“The study shows that the higher the level of air pollution, the higher the risk of schizophrenia. For each 10 ?g/m3 (concentration of air pollution per cubic metre) increase in the daily average, the risk of schizophrenia increases by approximately twenty per cent. Children who are exposed to an average daily level above 25 ?g/m3 have an approx. sixty per cent greater risk of developing schizophrenia compared to those who are exposed to less than 10 ?g/m3,” explains Senior Researcher Henriette Thisted Horsdal, who is behind the study.

To put this research into perspective, the lifetime risk of developing schizophrenia is approximately two percent, which is equal to two out of a hundred people developing schizophrenia in one’s life. For people exposed to the lowest level of air pollution, the lifetime risk is just under two percent. The lifetime risk for people exposed to the highest level of air pollution is approximately three percent.

“The risk of developing schizophrenia is also higher if you have a higher genetic liability for the disease. Our data shows that these associations are independent of each other. The association between air pollution and schizophrenia cannot be explained by a higher genetic liability in people who grow up in areas with high levels of air pollution,” says Henriette Thisted Horsdal about the study, which is the first of its kind to combine air pollution and genetics in relation to the risk of developing schizophrenia.

The study included 23,355 people in total. Out of those people, 3,531 developed schizophrenia. Through the results of this research one can see that there is an increased risk of schizophrenia when the level of air pollution during childhood increases; however, the researches cannot comment on the cause. Instead, the researched emphasize that further studies are needed before they can identify the cause of this association.

Schizophrenia is thought to mainly be a result of genetics, brain chemistry, substance use, and exposure to viruses or malnutrition before birth. So, I think it is very interesting that exposure to air pollution during childhood may be a cause as well. Additionally, I hope that these findings and further studies become very useful to schizophrenia research and prevention, as schizophrenia is a very serious mental illness and there is no cure.

 

Forbidden Baby Editing

We all at this point in life have come to know what gene editing is. The technology for it is slowly and forever becoming more and more advanced. The scary thing about editing genes is the fact that we have to potentially affect a baby’s life their entire time alive. It has many different problems which is why its going to take a long time for it to fully get approved in the hospital.

Well unfortunately in an article found here there was a fright to figure out that someone had actually edited the genomes of some babies without people knowing. Many scientists condemned scientist He Jianku as it came to light that he had done something that the science was not ready for yet. He used CRISPR Cas9 tech in order to alter some genes of a few babies. The definition of CRISPR is here but basically it is a general tech to edit the genomes of babies that haven’t been born yet. People were up in arms about the process because he had bypassed the ethical laws and needed up editing the genes of a real live human. People in the science community go on to say that the CRISPR technology just isn’t ready to be executed on a human. There needs to be many more trials before it is used on a person for real. There is progress to make sure this doesn’t happen such as fines and bans from research however they are trying to make sure that it doesn’t happen at all. It gives scientists a bad name and he is trying his best to not let that happen. Technology will always advance and the hard part is trying to make sure that tech is ethical. Hopefully this gives insight to how we can prevent things like this happening in this day and age

How are ocean conditions harming its animals?

A recent article written by Rachel Nuwer discusses the dangers of ocean acidification and how the ocean environment could compromise the fishes’ ability to swim and feed. The existence of one of the world’s most threatening predators is being threatened by ocean warming and acidification. Sharks might lose their place at the top of the marine food chain due to the changing ocean environment. As carbon dioxide levels rise in the ocean, it increases the acidity of the water. As this factor starts to rise, the teeth and scales of sharks may begin to damage, which compromises their ability to swim, hunt, and feed. According to research published in Scientific Reports, acid-base adjustments have proved to be the first piece of evidence of “dentical corrosion” caused by ocean acidification conditions. After investigating the impact of hypercapnia on a specific shark species and analyzing the acid-based regulation, the team concluded that the denticle corrosion could increase denticle turnover and compromise the skin and protection of the shark species.

A close up on the denticles and scales of a wild shark

The harsh conditions placed on the sharks could cause several consequences and ultimately could affect the whole ocean community. Biologist Lutz Auerswalk states that sharks could be displaced as apex predators, which could disrupt the whole food chain. In addition, great white sharks are already endangered, and these conditions could wipe them out completely, he states. Ocean research Sarika Singh and Auerswald, while studying over beers, stumbled upon a unique idea. After realizing that the high acidity of beet and many other carbonated beverages causes human teeth to erode, they wondered what effect more acidic ocean water might have on shark teeth.

Most studies on ocean acidification examine species that specifically build shells or other calcium-based structures, including corals and shellfish. Because sharks are large and challenging to work with, only a few studies have been conducted about how acidification might impact these animals. Only one paper has examined the effect of pH on sharks’ skin denticles or scales. The study used small-spotted catsharks and exposed them to different environments and filmed their swimming patterns. After analyzing a pectoral fin skin sample, they did not find a specific impact. However, the results were possible constrained by the low carbon dioxide concentration the researches used, compared with the high levels of acidity already present in many oceans.

To begin exploring this question for themselves, Auerswald and Singh conducted an experiment and focused on puff adder shy sharks, a small species that is easy to handle. They decided to investigate the acidification effects on the bigger scales. They divided the sharks into control and experimental groups and observed the results. After a few months, the electron-microscope analysis revealed that the concentrations of calcium and phosphate in the sharks’ denticles were significantly reduced. They noticed damaged scales on many of the sharks as well. Though the corroded scales might not impact their ability to hunt, for larger species such as the great white shark, scales play an essential role in hydrodynamics. Because denticles are responsible for an increase in swimming speed, damaged denticles could slow sharks down and make it more difficult for them to catch prey. Because many animals have been wiped out, we must strive to protect all the species that are deeply impacted by this condition.

Discovering and Using Your Personal, Biological, Tiny Army

Bacteria is an important part of our biology, so important that we are essentially 99% bacteria. A lot of this bacteria is part of the human gut microbiome. This topic has been picking up interest in the field of biology, and have shown linkage to many diseases such as inflammatory bowel disease and obesity. Not only do the bacteria in our gut play a role in preventing these diseases, but their symbiotic relationship helps us maintain metabolic functions.

File:The first and second phases of the NIH Human Microbiome Project.png

This is a depiction of the numerous types of bacteria in our microbiome.

Until recently we were unable to study these bacteria due to our inability to cultivate them in a lab; however, due to new advancements in sequencing technology we can now see how big of  role they play in our biology and our functions. These bacteria are “estimated to harbor 50- to 100-fold more genes, compared to the hose. These extra genes have added various type of enzymatic proteins which were non-encoded by the host, and play a critical role in facilitating host metabolism.” For example, gut microbiata is very important in fermenting unabsorbed starches. These bacteria also aid in the production of ATP. A certain type of bacteria generates about 70% of ATP for the colon with a substance called butyrate as the fuel.

File:Immune Response to Exotoxins.png

This image shows the interaction between the gut and the immune system. The immune system targets bacteria, but somehow not our gut bacteria. 

Another large role of the gut microbiome is its interactions with out immune system and nervous system. The bacteria in our gut suppress the inflammatory response in order to not be targeted by the immune system. This allows for a symbiotic relationship between us and the bacteria inside of us. This allows the gut bacteria to help regulate the inflammatory response without being stopped by the very thing it’s regulating. Without these bacteria our inflammatory responses would be completely out of the ordinary.

These findings with gut bacteria are fairly new and there is much more to come regarding their use in the field of medicine. Something to think about that I found fun was how little of us is really human. Ninety nine percent of you is bacteria, which essentially means that we are pretty much just giant colonies of bacteria. Kind of gross/amazing when you think about it.

Can your diet’s effect on gut bacteria play a role in reducing Alzheimer’s risk?

Could following a certain type of diet affect the gut microbiome in ways that decrease the risk of Alzheimer’s disease? According to researchers at Wake Forest School of Medicine, that is a possibility.

In a small study, researchers were able to identify several distinct gut microbiome signatures in study participants with mild cognitive impairment (MCI), but not in the other participants with normal cognition. Researchers found that these bacterial signatures correlated with higher levels of markers of Alzheimer’s disease in the cerebrospinal fluid of the participants with MCI. Additionally, through cross-group dietary intervention, the study also revealed that a modified Mediterranean-ketogenic diet resulted in changes in the gut microbiome and its metabolites that correlated with reduced levels of Alzheimer’s markers in the members of both study groups.

“The relationship of the gut microbiome and diet to neurodegenerative diseases has recently received considerable attention, and this study suggests that Alzheimer’s disease is associated with specific changes in gut bacteria and that a type of ketogenic Mediterranean diet can affect the microbiome in ways that could impact the development of dementia,” said Hariom Yadav, Ph.D., assistant professor of molecular medicine at Wake Forest School of Medicine.

The randomized, double-blind, single-site study involved 17 older adults, 11 diagnosed with MCI and six with normal cognition. These participants were randomly assigned to follow either the low-carbohydrate modified Mediterranean-ketogenic diet or a low-fat, higher carbohydrate diet for six weeks then, after a six week “washout” period, to switch to the other diet. Gut microbiome, fecal short chain fatty acids, and markers of Alzheimer’s in the cerebrospinal fluid were measured before and after each dieting period.

The limitations of the study included the subject’s group size, which also accountns for the lack of diversity in terms of gender, ethnicity, and age.

“Our findings provide important information that future interventional and clinical studies can be based on,” Yadav said. “Determining the specific role these gut microbiome signatures have in the progression of Alzheimer’s disease could lead to novel nutritional and therapeutic approaches that would be effective against the disease.”

Each human contains trillions of organisms that influence our metabolism, immune function, weight, and even cognitive health. It is so fascinating to examine the role of gut microbiomes in the progression of Alzheimer’s disease. I believe diets can be very controversial, and I find it interesting to see researchers in this study show how the Mediterranean-ketogenic diet may be effective against Alzheimer’s. However, I am so intrigued to see where these findings may take us with approaches that may be effective against Alzheimer’s, whether they be nutritional or therapeutic approaches.

Page 1 of 3

Powered by WordPress & Theme by Anders Norén

Skip to toolbar