Have you ever wondered why some people travel across the world just to go snorkeling or scuba diving? The answer is simple, Coral. Coral is one of the most beautiful organisms in the ocean. While coral is amazing, its looks are not all that it achieves. Coral is home to 25% of marine species while also feeding close to half a billion humans. Coral has such a huge impact on the world we live in, yet pollution and global warming are slowly taking out tons and tons of beautiful coral from our oceans. Although there are over 6,000 species of coral, we are going to narrow it down to just 1,500 and analyze the “stony corals” ability to build reef architectures.

Scleractinia (calcium skeleton of stony corals) at Göteborgs Naturhistoriska Museum 9006

Phillip Cleves is a scientist at Carnegie Melon who set out to use cutting-edge CRISPR/Cas9 genome editing tools to reveal a gene that’s critical to stony corals’ ability to build their reef architectures. Cleves highlights the ecological significance of coral reefs, emphasizing their decline due to human-induced factors like carbon pollution. Carbon emissions lead to ocean warming, causing fatal bleaching events, and ocean acidification, hindering reef growth. This acidification is particularly detrimental to stony corals, as it affects their ability to form skeletons made of calcium carbonate. Understanding the genetic basis of coral skeleton formation is a key research area to address this issue.

You may be wondering, what is CRISPR? CRISPR is like a genetic toolbox that scientists can use to edit DNA. Imagine DNA as a big instruction book that tells our bodies how to work. Sometimes, there are mistakes in the instructions, like a typo in a recipe. CRISPR lets scientists find and fix these mistakes. They can cut out the wrong parts of the DNA and put in the right ones, like editing a sentence in a book. This helps researchers study how genes work and could one day help treat diseases by fixing genetic errors. Using CRISPR, Cleves and his team were able to identify a particular gene called SLC4y which is required for young coral to begin building. The protein it encodes is responsible for transporting bicarbonate across cellular membranes. Interestingly, SLC4γ is only present in stony corals, but not in their non-skeleton-forming relatives. Together, these results imply that stony corals used the novel gene, SLC4γ, to evolve skeleton formation.

Finally, in AP Biology, you learn about genetics, the study of how traits are passed down from parents to offspring through DNA. CRISPR technology is like a super-advanced tool that geneticists use to manipulate DNA. It’s kind of like having a magic eraser for genetic mistakes! CRISPR also brings up the potential for gene editing in humans although sometimes it is seen as unethical. What genes would you edit if you had the chance?

 

Print Friendly, PDF & Email