BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: biology (Page 1 of 6)

A View into Life Millions of Years Ago

In an obscure geological valley at the very northern tip of Greenland’s large ice sheet, investigators have uncovered scientifically derived evidence of the existence of a lush, ancient ecosystem that was functioning over 2 million years ago. The clues to this ecosystem come from the oldest DNA ever recovered, bits and pieces of genetic material, carefully and tediously extracted from buried sediments representing more than 100 kinds of animals and plants. The investigators painstakingly extracted and “sequenced” the DNA strands and compared them to libraries of existing DNA “reads” from living species today.

DNA double helix horizontal
This is an incredibly impressive example of the power of environmental DNA (eDNA), as it is genetic material collected from the ambient environment and not individual organisms. The investigative team aimed to collect hundreds of samples from different locations within the ancient valley and reconstruct what this ecosystem looked like before the ice age. They found many different types of conifers, including poplars, thujas, and species like black geese and horseshoe crabs, that are now common further south of Greenland, but most of which are no longer found in the Arctic at all.
There are many reasons that I believe this discovery is important, not the least of which is that it may give scientists clues as to how some species were able to adapt to climate change in the past and give us some insight into climate change and evolution as we advance. It may also turn the time-honored discipline of paleontology on its head by driving it from its almost all fieldwork mode into the molecular biology laboratory.

The DNA/RNA biochemical process plays a very important role within the nucleus of each cell which defines the existence and evolutionary success of living plants and animals on the planet. The article which I selected from “Nature” discussed above, really emphasizes importance of these chemical structures regardless of whether we are investigating the past, looking into possible future biological scenarios, or looking to “improve”, correct or modify existing biological systems. Understanding both the future and historic past of the biology of the planet is no longer simply relegated to the desktop microscope, but more appropriately is a function of understanding the complex biochemical reactions at the molecular level, not just the cellular level. The extraction of biological (environmental DNA) material from historic sediments thousands of years old underscores the important changes taking place in this exciting new field and emphasized to me that the study of DNA/RNA biochemistry is very relevant to understanding all living systems, past, present and likely into the future.

 

A new evolution in cancer metastasis research

 

Perhaps the greatest fear of any cancer patient is metastasis.  According to Cancer.Net, metastasis is the process by which cancers spread throughout the body.  Furthermore, according to Cancer.gov, “Metastatic cancer is notoriously difficult to treat, and it accounts for most cancer deaths.” However, a new study in Nature, as outlined in an article in The Scientist, unearths new truths about how cancer cells metastasize that could perhaps spark a new wave of research.  

As stated in The Scientist, “Previous studies have shown how, counterintuitively, cells pick up the pace as they move through thicker solutions.”  Recent studies have elaborated on this accepted facet of cancer reaction, and have discovered that Cancer cells have the ability to detect, and even memorize the viscosity of their environments.  Researchers noticed that cancer cells initially exposed to viscous environments retained their speedy movement even after they were moved to watery environments, at a level not represented in those constantly in watery solutions, thus indicating a sort of memory of environment in cancer cells.  This phenomenon of “cell memory” is similar to the memorization features seen in T-memory cells we discussed in class during the unit on the immune response.

Breast cancer cell (2)

Later, that same team of scientists released study that aimed to determine how cancer cells are able to move quickly through viscous substances.  According to an article in The Scientist, “cancer cells move by taking up water at the front of the cell and squirting it out the back, propelling themselves like octopuses through narrow spaces.”  Some researchers believe that new drug research could aim to target the ion channel that causes this transportation: TRPV4, but others are not so convinced.  According to Miguel Valverde of Pompeu Fabra University, “Animal knockouts for the TRPV4 channels develop normally,” indicating that the newly discovered transportation mechanism may not be as essential as researchers may believe.

Still, the discovery of a new transportation method for cancer cells explaining its peculiar preference for viscosity is an important breakthrough, that will undoubtedly guide future research in cancer metastasis. 

Are Rats Really Interacting With Reef Fish???

A new study has found that the presence of invasive rats on tropical islands is affecting the territorial behavior of fish on surrounding coral reefs. The rats, which arrived on the islands as stowaways on ships in the 1700s, change the behavior of jewel damselfish, a herbivorous species of tropical reef fish that “farm” algae in the branches of corals.Microspathodon chrysurus

The study, which was led by scientists from Lancaster University in the UK and involving researchers from Lakehead University in Canada, was published in Nature Ecology and Evolution and compared five rat-infested and five rat-free islands in a remote archipelago in the Indian Ocean. The rats disrupt an important nutrient cycle by attacking and eating small resident seabirds and their eggs, leading to a drop-off of nutrients in the seas surrounding rat-infested islands. This results in a lower nutrient content of seaweed for herbivorous fish, such as the damselfish. The damselfish around rat-infested islands behave less aggressively and need to have larger territories due to the lower nutrient content of the algae.

Seabirds travel out into the open ocean to feed and return to nest on islands. The seabirds then deposit nutrients, through their droppings, onto the islands, and many of these nutrients are subsequently washed into the seas, fertilizing the surrounding coral reef ecosystems. On islands with invasive rats, the rodent populations decimate the seabirds, leading to seabird densities that are up to 720 times smaller on rat-infested islands. This results in much less nitrogen flowing onto the coral reefs around these islands.

Seabirds LC0141

Around islands with intact seabird populations, the farming damselfish aggressively defend their small patch, typically less than half a square meter, of the reef to protect their food source – turf algae. However, the scientists observed that farming damselfish on reefs adjacent to rat-infested islands were much more likely to have larger territories and were five times more likely to behave less aggressively than those who lived on reefs adjacent to islands without rats. The damselfish around rat-infested islands need to have larger territories because the algae around rat-infested islands is less nutrient-rich due to the missing seabird-derived nutrients.

NSW seabed 1

This behavior change in the damselfish could potentially have wider implications for the spread of different species of coral, the distribution of other reef fish, and the resilience of damselfish over generations due to changes in hereditary traits. Changes in behavior are often the first response of animals to environmental change and can scale up to affect how and when species can live alongside one another. This study is the first to show that invasive rats can change the behavior of coral reef fish in this way and highlights the importance of understanding and managing the impacts of invasive species on ecosystems.

Students in our AP Biology class are likely to be familiar with these concepts of nutrient cycling and the importance of nutrients in supporting the growth and productivity of an ecosystem. The study highlights how the nutrient cycle on coral reefs is disrupted by the presence of invasive rats, leading to a drop-off in nutrients in the surrounding seas and a lower nutrient content of seaweed for herbivorous fish. This can have consequences for the growth and productivity of the coral reefs and the overall health of the ecosystem.

Try to eat just one potato chip – it probably won’t happen.

Potato Chips or any junk food for that matter can be very addicting after just the first bite. The high concentrations of carbohydrates, sugars, and fats commonly found in these processed foods contribute to one of America’s greatest health risks, adult obesity. Today, over 40% of America’s adult population is considered obese and in the last 20 years, the prevalence of severe obesity has almost doubled to 9.2%. A single bag of Lay’s Potato Chips contains 15g of carbohydrates and around 170mg of sodium which could take around 15 mins of very intense workout to burn off. We have learned in AP Bio that consuming many carbohydrates without burning them off through exercise results in carbs converting into fatty acids during cellular respiration. So, when looking into obesity, researchers from Osaka Metropolitan University wanted to understand why “High-calorie foods — high in fat, oil, and sugar” tend to be overeaten.

Walmart Wenatchee 2

The researchers investigated the specific gene behind overeating and linked it to one named “CREB-Regulated Transcription Coactivator 1 (CRTC1).” In the past, trials on mice have indicated that when the CRTC1 gene is removed, they become more obese indicating that it “suppresses obesity”. But, it is now known that CRTC1 is found in all neurons around the brain so, they wanted to dive deeper and find the specific mechanism or neuron within this gene that reduced obesity.
First, Associate Professor Shigenobu Matsumura, who lead the research, hypothesized that “CRTC1 expression in MC4R-expressing neurons suppressed obesity because mutations in the MC4R gene are known to cause obesity.” So, they conducted trials on mice, manipulating the MC4R-expressing neurons to test their theory. It turns out that when on a standard diet, the original mouse and the one with the manipulated MC4R gene remained the same weight. But, when put on a high-fat diet, or one more resembling junk food, the mouse that was deficient with the CRTC1 MC4R neuron became “significantly more obese than the control mice and developed diabetes.” Reflecting on this outcome, the researchers have concluded that the CRTC1 gene plays a role in controlling our portions. Looking forward, the researchers hope this will lead to a better understanding of what causes people to overeat.

Mouse Brain Cross-Section

In our current AP Biology unit, we have been learning about cell respiration and the way our body consumes both O2 and food to create ATP energy. Our body can break down glucose through glycolysis, convert it into two Pyruvate, and then Acetyl CoA, to then create NADH and FADH2 through the Citric Acid Cycle to produce about 28 ATP energy molecules through Oxidative Phosphorylation. Other nutrients we consume like fats and proteins are also converted to ATP energy when needed but, when no energy deficit is created through activity, these nutrients along with excess glycogen are bound to insulin to create fat around the body. Looking forward, it is important to understand how addictive these unhealthy foods can be on a neurological and biological level, warning us of the dangers of overconsumption.

Newly Discovered Neurons and Their Role in Maintaining Normal Body Temperature

The internal body temperature in humans and mammals is maintained at 37℃/96℉, unless disrupted by a force like an illness or heat exhaustion. Regulating the body to stay in the normal range is crucial for survival and for enzyme function.  Our internal body temperature is constantly being regulated by our hypothalamus, located at the base of our brain. The hypothalamus uses sensors from a mediator known as prostaglandin E which is brought about when an infection is present in the body. After PGE2 is present, it signals for the body to raise its temperature and combat the infection. If temperature levels are abnormal, the enzymes in our body have trouble functioning because they need specific temperature conditions to carry out reactions. Therefore, maintaining homeostasis throughout the body by regulating internal temperature is key to human survival.

Prostaglandin E

A team of researchers at Nagoya University in Japan were inspired by this process and decided to focus on the unknown neurons that make up the receptors of PGE2 and how this regulation process functions. The group of professors and colleagues successfully discovered key neurons that work to regulate the body temperature of mammals. This finding can be highly useful for creating future technology that can artificially fix body temperature related conditions such as hypothermia, heat stroke, and obesity.  

Neuron

Neuron

By using rats as a subject for their research, they exposed the rats to cold (4°C), room (24°C) and hot (36°C) temperatures to observe the effect of temperature changes on EP3 neuron response. After conducting the experiment, the researchers were able to conclude that exposure to the hot temperature led to an activation of EP3 neurons and the cold temperatures did not. Once they made this conclusion, they dug deeper into the neurons and analyzed the nerve fibers of the neurons to discover where the signal transmission occurs after sensing an infection. The researchers were able to conclude that the neuron fibers are spread out in different areas of the brain, mainly the dosomedial hypothalmus, which works to activate the sympathetic nervous system. Not only did they discover these fibers, but they also discovered the substance that EP3 neurons utilize to send signals to DMH. By observing the structure and chemical makeup, they found that this substance is a neurotransmitter known as gamma-aminobutyric acid (GABA), which inhibits neuron excitation. 

Finally, their findings support the idea that EP3 neurons are a major component of regulating internal body temperature and that they send out the GABA substance to signal to DMH neurons for a proper response. Their research proves that intiating a neural response decreases body temperature and inhibiting neurons leads to an increase in body temperature. Furthermore, their strong research in this area can support future development of advanced technology that will be capable of artificially adjusting internal body temperature. The anticipated technology could help prevent hypothermia, treat obesity to keep body temperature slightly higher and initiate fat burning, and be a key method of survival in hot environments. 

 

Ballerinas Got the Brains!

A 2013 research article conducted by scientists at the Imperial College of London has dived into the ballet world and researched the brains of ballerinas. Their research led to the discovery that dancers can suppress signals of dizziness using the balance organs of the inner ear. The vestibular system, found in the inner ear, consists mainly of smaller circular canals. Each canal recognizes different motions: Up and Down, Side to side, and tilting. These canals are filled with hair and liquid which move with your body to send signals to the brain using the acoustic nerve. With this information, your brain can process balance, dizziness, and vertigo. These researchers became curious about how ballet dancers can perform multiple balanced pirouettes without feelings of dizziness. And as a dancer, I would say this is because of the technique of spotting which involves rapidly moving the head to keep one’s eyes on a fixed spot.

However, this study has proved that wrong. So, with the help of 29 ballet dancers and 20 rowers, the researchers put it to the test. Their method of testing involved putting the volunteers in a dark room and spinning them on a rotating chair. They then timed how long it took for the dizziness to stop. In addition, the researchers measure eye reflexes triggered by the vestibular organs and later completed MRI scans of the patient’s brain structure. The data they collected showed that the eye reflexes and perception of spinning lasted a shorter time with the dancers than with the rowers.

From this point, doctors wondered how they could transfer this ability to their patients. After taking an in-depth look at the dancer’s brains it was concluded that the cerebral cortex and cerebellum were the most affected. The cerebral cortex is found in the largest part of the brain and is responsible for speech, judgment, thinking and reasoning, problem-solving, emotions, learning, and the senses. While the cerebellumMajor parts of the brain, a fist-sized portion found in the back of the brain, uses neurons to coordinate voluntary muscle movements and to maintain posture, balance ,and equilibrium. In the AP Biology curriculum, learning the nervous system helps in one’s understanding of transport and membranes. The nervous system sends signals across the plasma membrane of a cell to the brain. With this signal, the cerebellum and cerebral cortex can process information and signal parts of the body to move. From looking at the MRI scans, scientists discovered that the dancer’s cerebellum was smaller. Scientists believed dancers would be better off not using their vestibular system and solely relying on “highly coordinated pre-programmed movements”. Scientists believe it is not necessary for dancers to feel dizziness so, their brains adapted to suppress that feeling. As a result, the signal that goes to the cerebral cortex is reduced. So, if scientists and doctors monitor the cerebral cortex they could begin to understand how to treat patients affected by chronic dizziness.

 

 

NMT5: A New Enemy To SARS-CoV-2?

In the past few months, scientists in the United States have developed a potential new antiviral to SARS-CoV-2.   The drug, called NMT5, is effective against several variants of SARS-CoV-2, the virus that sent the planet into lockdown only a few years ago.

As stated in the journal Nature Chemical Biology, NMT5 coats SARS-CoV-2 particles as they travel through the body.  Thus, when the virus attempts to attach to the ACE2 receptor proteins of the cell, NMT5 attaches first.  The drug changes the shape of the cell’s receptor upon attachment, which makes it harder for SARS-CoV-2 to infect the cell, and on a larger scale, the organism’s body.

In order to ensure that the drug isn’t toxic, researchers tested NMT5 on healthy cells.  According to the National Institute Of Health, it was “found that NMT5 was non-toxic and only changed receptors that were being targeted by the virus. These effects lasted for only about 12 hours, meaning the receptors functioned normally before and after treatment”.  In fact, in an experiment that used hamsters as models for the human immune system, NMT5 reduced SARS-CoV-2’s ability to bond to ACE2 receptors by 95%!

A significant reason NMT5 is so effective is that it not only limits one particle of SARS-CoV-2, but the effectiveness of the virus as a whole, when present. When a SARS-CoV-2 particle with NMT5 attaches to an ACE2 receptor, it adds a nitro group to the receptor, which limits the ability of the particle to attach to the receptor for 12 hours by changing the receptor’s shape.  Thus, no COVID-19 particle can attach to the ACE2 receptor – even ones that haven’t been surrounded by NMT5.  Stuart Lipton, a professor at The Scripps Research Institute, states that “what’s so neat about [NMT5] is that we’re actually turning [SARS-CoV-2} against itself”, as particles surrounded by NMT5 serve to limit the ability of other SARS-CoV-2 particles.  The drug has excited scientists studying SARS-CoV-2 around the world, as they have “realized [NMT5] could turn the virus into a delivery vehicle for its own demise” (PTI, The Tribune India).

Cell reception and signaling are incredibly important to both viruses and the human immune system.  A virus works by infiltrating a cell through cell receptors that line the outside of the desired cell’s phospholipid bilayer.  Viruses attach to these receptors and infect the cell as a result.  SARS-CoV-2’s process is depicted below, as it attaches to the ACE2 receptors described earlier.  The immune system works by recognizing the virus at hand and signaling B-Lymphocytes and T-Lymphocytes to destroy the virus and infected cells.  B-Plasma cells surround the virus, as shown below, which neutralize it and allow it to be engulfed and destroyed by macrophages.  Cytotoxic T-cells kill cells already infected by the virus.  Both B and T Lymphocytes are activated as a result of T-Helper cells, as T-Helper recognize the virus when a piece of it is displayed at the end of a macrophage, and signal the Lymphcytes by releasing cytokines (another example of cell reception and signaling).  This process is all shown in the image below, with the specific virus depicted being SARS-CoV-2.

Fphar-11-00937-g001

However, NMT5 prevents the initial infection from happening when SARS-CoV-2 enters the human body by bonding with SARs-CoV-2 particles before they attach to cells, which allows for the immune system to quickly destroy the virus.  By blocking SARS-CoV-2’s access to receptors, the drug stops the particle before it can infect a cell and do any damage. Since cell receptors are specifically shaped, and any change in form results in a loss of normal function, the ensuing change in shape of a receptor limits any SARS-CoV-2 particle from attaching to said receptor, further limiting the virus’s damage by blocking cell reception from occurring. Thus, the immune system kills the virus without major symptoms.

All in all, the development of NMT5 is exciting for scientists all around the globe.  If it is as effective as studies show, it could play a major role in limiting the effects of SARS-CoV-2.  Hopefully, all goes well, and you should be hearing a lot more about the drug sometime soon.

If you have any updates or questions on NMT5, I invite you to share them in the comments below.  Thank you for reading my blog post, and stay curious!

Afraid of needles? No Problem- inhale a covid vaccine!

Its been a few years now since the first COVID-19 vaccine became available to the public. And since then, there has been a multitude of people who have been hesitant to receive a vaccine. Some people don’t believe in the vaccine – or even in the virus itself, some are just anti-vaxxers, some however, are simply afraid of needles. A Chinese pharmaceutical company based in Tianjin, China, CanSino Biologics, has recently created a COVID-19 vaccine you can inhale – and hopefully with this introduction, people will be more likely to get vaccinated as the “fear of the needle” with disappear.

The vaccine is called, “Convidecia Air.” And while you may be skeptical about it since it’s not really a “real vaccine that is injected into your body, the nasal flu vaccine has been around for years now and it enters your body the same way as Convidecia Air. I have personally received both the nasal vaccine (the one you inhale), and the needle vaccine (injection) from the flu, and I feel that they have worked the same in the past- which is why I’m optimistic about Convidecia Air.

CanSino Convidecia

As we’ve talked about in AP Biology recently, a regular (via injection) COVID-19 vaccine enters your body, and T-lymphocytes and B-lymphocytes remain in the body as a result. These lymphocytes function as both a Cell-Mediated Response and a Humoral Response, respectively, to try to fight off invading pathogens and prevent re-infection. With this new vaccine that enters the body via inhaling, the same T-cells and B-cells remain in the body after it is introduced to you.

 

CanSino Biologics logo

The introduction of this new type of COVID-19 vaccine seems promising to scientists, as by entering the body the same way as the actual SARS-CoV-2 Virus- through the lungs and mouth- scientists believe that an inhaled vaccine might be more effective in terms of preventing disease and stopping the spread since it is also enters the body via the lungs and mouth.

Overall, scientists are hopeful that with the introduction of this new type of “inhaled COVID-19 vaccine,” people will remain healthier, and the pace at which the world recovers during its post-pandemic state will increase.

 

Is the recently discovered hidden cavity on the SARS-CoV-2 protein a target for drugs?

Many of us have been vaccinated against COVID-19 and have had the virus, leading us to become used to the virus being prevalent in our lives during the past few years. Even though a successful vaccine has been rolling out for a while now, new therapies have not yet been discovered for future strains. Finding new therapies for the virus remains a major priority in the field of science, even if many of us have been protected already. This issue remains a priority because new variants and strains have been continuing to emerge, and some resist present therapy mechanisms.

SARS-CoV-2

The most effective approach to attempting to combat the virus is addressing the proteins on the surface of therapeutic targets, known as spike proteins. The spike protein (S proteins) located on the surface of the virus leads to its spiky protrusions, and its mechanism to enter human cells. Like we learned in AP Biology class, the spike proteins of the virus latch to cells by matching with a specific receptor on a cell’s surface. The spike proteins of the virus have to latch on to the new cell to infect. Successful messenger RNA vaccines properly target this spike protein, which is the main goal when creating new therapies for viruses. 

                                             Spiky appearance of SARS CoV-2 virus

Luigi Gervasio, a chemistry and structural/molecular biology professor at University College London, and his team have been working towards addressing this issue. By partnering with the University of Barcelona’s research team, the two teams took the first steps to discover a possible mechanism for future drugs to detect and protect against the SARS CoV-2 Virus. Through thorough research and investigation, they uncovered a “hidden” cavity on the surface of a prominent infectious agent of the virus known as Nsp1. The team was able to make this discovery by testing small molecules that had the potential to bind to the Nsp1 cavity. The team identified one, 5 acetylaminoindane, which is essential for the development of new drugs against viruses. They concluded that this cavity permitted the calculation of the cavity’s atomically spatial arrangement, which will allow the development of these drugs.

The results of their breakthrough findings set the stage for developing new therapies that will be able to target the NSp1 protein against SARS-CoV-2 and present Nsp1 proteins in future coronavirus strains. Not only will this finding be impactful for targeting SARS-CoV-2 and future variants, but also new cavities on the surface of other proteins that have yet to be found by scientists. Finally, this research is monumental for both SARS-CoV-2 and virus treatment in years to come!  

 

The Science Of Addiction

Overview of the brain

There are three main parts of the brain: the cerebrum, the cerebellum, and the brain stem. The cerebrum controls most of our functions such as movements, thoughts, and even our senses. The cerebrum is roughly two-thirds of the brain as a whole and is divided into four lobes: the frontal, parietal, temporal, and occipital. These lobes control emotions, pain receptors, hearing, vision, and more. Second, the cerebellum is located right behind and a little below the cerebrum, and controls most of our motor functions. Finally, the brain stem is the smallest portion of the brain, sitting beneath the cerebrum and in front of the cerebellum. The brain stem controls both breathing and heart rate, making it just as important as the other parts of the brain regardless of its small size.

Diagram of the brain. Wellcome L0008294

Addiction 

Abusive drugs increase the amount of dopamine in the brain which is produced by the brain stem. Often brain activity that would often be seen from a simple social interaction or through eating food will be seen after addictive drugs are consumed, but the activity will be much more powerful and persistent, leading to the addiction. The brain recognizes the pleasure the drug may grant the user and this numbs the user, over time, to natural releases of dopamine. Further, a study conducted on mice proved that the prefrontal cortex controls social behavior and as social behavior is affected by addiction, one of the major parts of the brain is damaged by drug use.

Connection to biology

The original article articulates how drugs of abuse target circuits in the brain and affect how the reward centers are damaged by drug use. Further, the article focuses on how cortisol levels can affect how quickly a person can recover from an addiction. This is important for addiction research as recovery windows will be more accurate if doctors can test how much cortisol a person has. However, this is not nearly as important as the study of the effects drugs have on our brains. This connects to our biology class so far this year as the plants we’ve been experimenting on in the lab have been watered daily. However, if we suddenly just decided to stop watering them the plants would have the same reaction as someone who was addicted to drugs being cut off: yearning for what was taken from them. In the same way that plants depend on water, a drug addiction makes the addict depend on the drug for functionality as the person’s brain is so damaged that it can no longer produce dopamine without synthetic production through drugs.

Smilies for Article Feed Back

 

Scientists Discover Super-Protein Involved in Gene Replication

For over 50 years, it has been believed all factors that control gene activation in humans were identified and known to scientists. However, researchers from the University of California San Diego and Rutger’s have proved this theory wrong. 

Collegiate professors, and now pivotal contributors to modern science Dr. Jia Fei and James Kadonaga, have discovered a new protein that is involved in the regulation of RNA polymerase. Called NDF (nucleosome destabilizing factor), this gene-building molecule not only unravels nucleosomes, but also “turbocharges” RNA polymerase as it works its way along the DNA strand, improving the synthesis of replicating RNA.

But that’s not all this protein has to offer: NDF has also been found to be in an array of species and organisms, ranging from yeast particles to mammals. This widespread presence suggests that NDF is an ancient factor in the process of gene activation, and has been here since the very beginning. 

NDF works by first interacting with nucleosomes in cells, and then goes on to facilitate transcription– in other words, to replicate strands of RNA. Enzymes called RNA polymerases then come into play, and copy the RNA via dehydration synthesis. This process includes removing oxygen molecules and hydroxides from each nucleotide to covalently bind them together, producing a waste product of water molecules and, finally, a copy of the RNA strand. 

While this newly discovered protein is crucial for the elongation of RNA strands in many organisms, it is especially abundant in humans. Kadanoga reports that it is “present in all [our] tissues,” particularly in stem and breast cells. This makes sense, as NDF has actually been linked to breast cancer; Abnormally high levels of this protein lead to hyperactivity in gene synthesization, which increases the chance of a mutation occurring, and thus cancer. 

With all the remarkable characteristics of NDF, it is crucial that scientists today continue to explore the capabilities and effects of this gene-activating protein, and use it as a basis for studying diseases and phenomenons that occur in the process of gene replication.

RNA recognition motif in TDP-43 (4BS2)

Depiction of RNA strand.

AlphaFold: Is Artificial Intelligence Taking Over?

In this news article by  she talks about a new deep-learning artificial intelligence system called AlphaFold. The purpose of this new technology is to predict the 3-D shapes of proteins by recognizing patterns in structures. At its first release in 2021, the AlphaFold included predictions for most known human proteins, with predictions of over 350,000 protein structures. Since its initial release, the AlphaFold database has increased the number of protein structure predictions to over 200 million.

Confidence alphafoldAF-Q63HQ2-F1

As you can see by the model, some parts of the prediction are more or less accurate than others. One of the main issues with AlphaFold is the fact that these are only predictions. Scientists cannot use this information with full confidence and require further experiments to be able to be confident in the findings. Even with this issue, scientists and researchers have been able to develop potential new vaccines, improve their understanding of diseases, and gain insight into human evolution with this new artificial intelligence system.

As you may remember from your AP Biology class, protein structures are extremely important in allowing the protein to perform its job. Proteins are extremely integral in your body’s ability to function. Enzymes are used to speed up reactions, antibodies protect our body from diseases, hormones send signals to the body, etc.  By knowing the structure of the protein, scientists gain a better understanding of how proteins and all of these processes work. Just by changing one amino acid, the whole structure changes which can cause diseases such as Sickle Cell Anemia. If you would like to learn more about other important purposes of protein structure, this article goes into more in-depth on the applications of protein structure and modeling.

Now onto the topic of artificial intelligence as a whole. While artificial intelligence can reduce human error, take risks instead of humans, create unbiased decisions, and automate repetitive actions, it also has several downsides(besides the possibility of it becoming sentient and taking over the world like in movies). Some of these are having high costs, increasing the amount of unemployment, being emotionless, having no morals, and making humans lazier. Artificial intelligence has the potential to completely change society as a whole. I believe that as long as we are able to keep artificial intelligence under control and not let it get into the wrong hands, it will be a great benefit to society through important breakthroughs, such as AlphaFold, and new ideas that would have never been thought of without the use of this technology.

Do you believe artificial intelligence will be the salvation for humanity or will it be its downfall?

CRISPR Mini | New Territory Unlocked

For over a million years, DNA has centered itself as the building block of life. On one hand, DNA (and the genes DNA makes up) shapes organisms with regard to physical appearance or ways one perceives the world through such senses as vision. However, DNA may also prove problematic, causing sickness/disease either through inherited traits or mutations. For many years, scientists have focused on remedies that indirectly target these harmful mutations. For example, a mutation that causes cancer may be treated through chemotherapy or radiation, where both good and bad cells are killed to stop unchecked cell replication. However, a new area of research, CRISPR, approaches such problems with a new perspective.

The treatment CRISPR arose to answer the question: what if scientists could edit DNA? This technology involves two key components – a guide RNA and a CAS9 protein. Scientists design a guide RNA that locates a specific target area on a strand of DNA. This guide RNA is attached to a CAS9 protein, a molecular scissor that removes the desired DNA nucleotides upon locating them. Thus, this method unlocks the door to edit and replace sequences in DNA and, subsequently, the ways such coding physically manifests itself. Moreover, researchers at Stanford University believe they have further broadened CRISPR’s horizon with their discovery of a way to engineer a smaller and more accessible CRISPR technology.

This study aimed to fix one of CRISPR’s major flaws – it is too large to function in smaller cells, tissues, and organisms. Specifically, the focus of the study was finding a smaller Cas protein that was still effective in mammalian cells. The CRISPR system generally uses a Cas9 protein, which is made of 1000-1500 amino acids. However, researchers experimented with a Cas12f protein which contained only 400-700 amino acids. Here, the new CasMINI only had 529 amino acids. Still, the researchers needed to figure out if this simple protein, which had only existed in Archaea, could be effective in mammals that had more complicated DNA.

To determine whether Cas12f could function in mammals, researchers located mutations in the protein that seemed promising for CRISPR. The goal was for a variant to activate a protein in a cell, turning it green, as this signaled a working variant. After heavy bioengineering, almost all the cells turned green under a microscope. Thus, put together with a guide RNA, CasMINI has been found to work in lab experiments with editing human cells. Indeed, the system was effective throughout the vast majority of tests. While there are still pushes to shrink the mini CRISPR further through a focus on creating a smaller guide RNA, this new technology has already opened the door to a variety of opportunities. I am hopeful that this new system will better the general well-being as a widespread cure to sickness and disease. Though CRISPR, and especially its mini version, are new tools in need of much experimentation, their early findings hint at a future where humans can pave a new path forward in science.

What do you think? Does this small CRISPR technology unlock a new realm of possibility or does it merely shed light on scientists’ lack of control over the world around us?

CRISPR Gene Editing: The Future of Food?

Biology class has taught me a lot about genes and DNA – I know genes code for certain traits, DNA is the code that makes up genes, and that genes are found on chromosomes. I could even tell two parents, with enough information, the probabilities of different eye colors in their children! However, even with all this information, when I first heard “gene editing technology,” I thought, “parents editing what their children will look like,” and while this may be encapsulated in the CRISPR gene editing technology, it is far from its purpose! So, if you’re like me when I first started my CRISPR research, you have a lot to learn! Let’s dive right in!

CRISPR

Firstly, what is CRISPR Gene Editing? It is a genetic engineering technique that “edits genes by precisely cutting DNA and then letting natural DNA repair processes to take over” (http://www.crisprtx.com/gene-editing/crispr-cas9).  Depending on the cut of DNA, three different genetic edits can occur: if a single cut in the DNA is made, a gene can be inactivated; if two separate DNA sites are cut, the middle part of DNA will be deleted, and the separate cuts will join together; and if the same two separate pieces of DNA are cut, but a DNA template is added, the middle part of DNA that would have been deleted can either be corrected or completely replaced. This technology allows for endless possibilities of advancements, from reducing toxic protein to fighting cancer, due to the countless ways it can be applied. Check out this link for some other incredible ways to apply CRISPR technology!

In this blog post however, we will focus on my favorite topic, food! Just a few months ago, the first CRISPR gene-edited food went on the market! In Japan, Sicilian Rouge tomatoes are now being sold after the Tokyo-based company, Sanatech Seed, edited them to contain an increased amount of y-aminobutyric acid (GABA). “GABA is an amino acid and neurotransmitter that blocks impulses between nerve cells in the brain” (https://www.scientificamerican.com/article/crispr-edited-tomatoes-are-supposed-to-help-you-chill-out/). It supposedly (there is scarce scientific evidence of its role as a health supplement) lowers blood pressure and promotes relaxation. In the past, bioengineers have used CRISPR technology to “develop non-browning mushrooms, drought-tolerant soybeans and a host of other creative traits in plants,” but this is the first time the creation is being sold to consumers on the market (https://www.scientificamerican.com/article/crispr-edited-tomatoes-are-supposed-to-help-you-chill-out/)!

Tomatoes

So, how did Sanatech Seed do it? They took the gene editing approach of disabling a gene with the first method described above, making a single cut in the DNA. By doing so, Sanatech’s researchers inactivated the gene that “encodes calmodulin-binding domain (CaMBD)” in order to increase the “activity of the enzyme glutamic acid decarboxylase, which catalyzes the decarboxylation of glutamate to GABA, thus raising levels of the molecule” (https://www.scientificamerican.com/article/crispr-edited-tomatoes-are-supposed-to-help-you-chill-out/). These may seem like big words, but we know from biology that enzymes speed up reactions and decarboxylation is the removal of carbon dioxide from organic acids so you are already familiar with most of the vocabulary! Essentially, bioengineers made a single cut in DNA inside of the GABA shunt (a metabolic pathway) using CRISPR technology. They were therefore able to disable the gene that encodes the protein CaMBD, and by disabling this gene a certain enzyme (glutamic acid decarboxylase) that helps create GABA from glutamate, was stimulated. Thus, more activity of the enzyme that catalyzes the reaction of glutamate to GABA means more GABA! If you are still a little confused, check out this article to read more about how glutamate becomes GABA which will help you better understand this whole process – I know it can be hard to grasp!

After reading all of this research, I am sure you are wondering if you will soon see more CRISPR-edited food come onto the market! The answer is, it depends on where you are asking from! Bioengineered crops are already hard to sell – many countries have regulations against such food and restrictions about what traits can actually be altered in food. Currently, there are some nutritionally enhanced food on the market like soybeans and canola, and many genetically modified organisms (GMOs), but no other genome-edited ones! The US, Brazil, Argentina, and Australia have “repeatedly ruled that genome-edited crops fall outside of its purview” and “Europe has essentially banned genome-edited foods” (https://www.scientificamerican.com/article/crispr-edited-tomatoes-are-supposed-to-help-you-chill-out/). However, if you are in Japan, where the tomatoes are currently being sold, expect to see many more genome edited foods! I know I am now hoping to take a trip to Japan soon!

Thank you so much for reading! If you have any questions, please ask them below!

How to Keep Your New Year’s Resolutions: The Making and Breaking of Habits

What is a habit? A habit is “a behavior pattern acquired by frequent repetition or physiologic exposure that shows itself in regularity or increased facility of performance“ (Merriam-Webster). With this being the second month of 2022, New Year’s Resolutions are still in many people’s minds. February is statistically the time when individuals give up on their life-changing aspirations that the new-year inspired, “virtually every study tells us that around 80% of New Year’s resolutions will get abandoned around this month” (This Is The Month When New Year’s Resolutions Fail—Here’s How To Save Them). The “new year, new me” mindset is beginning to seem a little too hard to accomplish. If we can create habits that contribute to our new year’s resolutions, maybe they won’t seem so difficult. So, how can we make these resolutions into good habits and break existing bad ones?

New Years Resolutions

Habits are created through associative learning. Essentially, as you repeat a certain behavior in the same context, it becomes an automatic response rather than a thought-out action and that is when it is a habit. When this switch happens, that behavior/action moves from the intentional mind to the habitual mind. So, if we can intentionally make certain changes as a part of a resolution, we will eventually do them without thinking and maybe accomplish a resolution! 

Brain

Now, let’s look at some interesting science involved in the study of habits! Specifically, the dorsolateral striatum. This is a part of the brain that “experiences a short burst of activity” as the brain begins to create a new habit (Revving habits up and down, new insight into how the brain forms habits). As a habit becomes stronger and harder to break, this burst also intensifies. This was proved in an MIT study where rats were taught how to run in a maze and received a sugar pellet reward at the end. As we have learned in biology, neurons are nerve cells that send and receive signals. In fact, we know all about how these signals are transmitted! In this study, using optogenetics, scientists controlled the neurons in the dorsolateral striatum with light. “A flashing blue light excites the brain cells while a flashing yellow light inhibits the cells and shuts them down” (Science Daily). As the rats were running through the maze, if the neurons were excited, they ran faster and habitually, whereas when the flashing yellow light inhibited the cells, the rats slowed down and no longer knew where to go, making wrong turn after wrong turn. Senior author of the study Kyle S. Smith said, “Our findings illustrate how habits can be controlled in a tiny time window when they are first set in motion. The strength of the brain activity in this window determines whether the full behavior becomes a habit or not”. This shows us, it is fairly easy to form habits if you continue it repeatedly as the action first begins! While this can be good or bad, with the other information you will learn in this blog post, I hope that this is encouraging! 

In a recent study rewards were also shown to help form habits. This study explored how giving individuals in India a reward for washing their hands before dinner created good hand washing habits. “The study involved 2,943 households in 105 villages in the state of West Bengal between August 2015 and March 2017. All participants had access to soap and water. Nearly 80 percent said they knew soap killed germs, but initially only 14 percent reported using soap before eating” (Small bribes may help people build healthy handwashing habits). These households were divided into groups. Those that received a reward for washing their hands before dinner did 62% of the time, whereas those who did not receive a reward only washed their hands 36% of the time. This is a big difference! “Significantly, good habits lingered even after researchers stopped giving out rewards” (Small bribes may help people build healthy handwashing habits). Rewards helped create the habit, but once the habit was formed, it was automatic and even without the reward, the habit still took place! Now you may be wondering, why is this information relevant? Well, reward yourself! If your goal is to do one pull-up everyday, give yourself a piece of chocolate every time you do it and eventually you will not need any chocolate! 

So, based on this information, how can we break bad habits? First off, go to a new environment. Due to the fact that habits form from repeated behaviors in the same context, by changing our surroundings, it is much easier to not participate in that behavior. Secondly, repeat a new, replacement behavior over and over. For example, if your goal is to eat less pears, make it a habit to reach for an apple every time you walk into the kitchen. As we know, repetition forms habits! Lastly, keep this new environment and action consistent – don’t start reaching for a banana every time you get home if you have been reaching for an apple when you walk into the kitchen. In order to form a habit it is critical to repeat a certain behavior in the same context. 

Now, we can now create good habits and break the old bad ones! With this information, make this the year that you actually follow through on your new year’s resolutions! Don’t let this month stop you. You have the knowledge and resources, get to it! New year, new you! Good luck! If you have any questions, feel free to comment below!

New Years Resolution

Cancer In Humans VS. Plants

Cancer is a disease that has ranked 2nd in the deaths of the US only falling behind to heart disease. In our AP Biology class, we learned that cancer in humans is caused by a cell that has a genetic defect that is multiplying too quickly causing clumps and tumors. Whilst this has been devastating to humans and other animals for years, how does it affect plants that are another kind of multi-cellular organism?

An article that highlights the effects of cancer on plants states that cancer in plants acts differently than cancer in humans. Within plants, the cells aren’t moving so it can’t affect many other tissues like in animal cells. Furthermore, plants, specifically trees, don’t have any vital organs whereas with humans if cancer reaches an organ such as the Brain or the Liver we will die, however, if cancer reaches a branch the tree can simply grow a new one. In a New York Times article, C. Claiborne Ray states that “Excess plant cell production in the form of galls sometimes benefits future generations of insects” This relationship is not seen in Animals and can really help the wasps as they lay their eggs in the fast-growing tissue. Cancer in plants can almost be seen as helpful to the environment.

Cancer stem cells model

Cancer in humans is vastly different because there is no upside to having cancer as an animal. Cancer in animals is caused by an old cell not dying but instead rapidly multiplying and thus creating an abundance of defective cells that cause things such as tumors and if it were to reach your vital organs you would most likely die. In humans, the only real way to treat cancer so far is to use Chemotherapy. This method of treatment is very basic as it doesn’t distinguish between what fast-growing cells are which and kills any cell that is growing too fast. It is not 100% effective nor is it side effect free. The patient’s hair falls off as hair is very fast-growing and the therapy believes that it is cancer cells so they kill it off.

In conclusion cancer in Humans and Plants are similar at the beginning with things such as how they contract cancer and what exactly happens. However, the effects for plants are severely less than the effects on humans. While plants cancer gives a nice home for wasps to lay eggs as well as simply give the plant a minor bump. Human cancer is a devastating disease that caused the death of millions. Let me know what you think down below!

 

Cellular GPS: A New Cancer Treatment

In recent years, it is estimated that 40% of people will face cancer during their lifetime. Still, there exist few reliable treatments for cancer, whereby it has become one of the leading causes of death in the world. Ideally, if a tumor is confined to one area of the body and is easily accessible, doctors may simply try to remove it with surgery. However, tumors are usually widespread and not so easily identifiable, whereby doctors turn to treatments such as chemotherapy which causes mass death of both healthy and unhealthy cells throughout the body. Nonetheless, scientists have discovered a potentially more targeted treatment for cancer, involving guiding magnetic seeds to tumors and burning them.

Bodily cells undergo the cell cycle, a controlled series of stages referred to as interphase, mitosis, and cytokinesis. Interphase is comprised of the G1, S, and G2 phases where cells perform normal activities, grow, undergo DNA replication, and duplicate organelles. Next, mitosis marks the division of the nucleus while cytokinesis marks the division of the cytoplasm. During this process, there are “checkpoints” at the end of the G1 phase, G2 phase, and mitosis. For example, maturation-promoting factors may trigger a cell’s passage through the G2 checkpoint if it has successfully duplicated and grown or stop a cell’s passage through this gateway if it has incorrectly copied itself. Cancer is caused when mutations in certain genes cause uncontrollable cell growth; this unchecked and rapid division causes many cells to pack closely together into tumors which hijack bodily functions, ultimately proving fatal unless treated.

Recently, researchers have proposed a new method to treat cancer patients, especially those with tumors in hard-to-reach places like the cranium. This treatment would send a highly magnetic thermoseed into one’s body which would be remotely heated once at the site of the tumor. Here, like driving a car on a loopy road, a doctor would use an MRI scanner to carefully guide the magnetic seed through the patient’s body. MRI scanners are reliable tools in scanning the location of tumors, so they would accurately pinpoint where to target and where to avoid with the thermoseed. Thus, this controlled method of eradicating tumors poses less of a threat with regard to damaging the body as a whole or even damaging surrounding tissues.

Although the prospect of such innovative research for remedies fuels optimism, it surely raises the question of which patients should undergo the new thermoseed treatment rather than well-trusted treatments like chemotherapy or open surgery. According to the study, this method would be greatly influential in treating glioblastoma, a common brain cancer. With traditional open brain surgeries, patients merely survive a year to a year and a half on average. Moreover, side effects are always a large risk with many current cancer treatments. However, I believe that killing the tumor remotely with a thermoseed and MRI has the potential to be a breakthrough, successfully eliminating the tumor and posing fewer long-lasting effects. While this treatment is still an idea at the beginning stages of research, its projected benefits make me optimistic about its future.

What do you think? Will this proposed cancer treatment be the reliable cure scientists have been looking for or a futile treatment that only reminds us of the challenge we are up against?

Glaciers Hold Less Water than Previously Thought. Is this Good?

Last summer in Alaska, I was kayaking up to the Holgate Glacier when I noticed the water getting colder. I began to feel the katabatic winds as I got even closer to the massive wall of ice. Small ice chunks began to surround the kayak, and I could see the fast moving silt deposits flowing beneath me. I then heard a noise which boomed and echoed off of the surrounding mountains, and I saw a massive chunk of ice break off (“calve”) from the glacier and plummet into the sea. I’ve always known that climate change was happening, but seeing it before my eyes reaffirmed my fears.

Aialik glacier pano 2

Holgate Glacier, Aialik Bay, Kenai Fjords National Park, Seward, Alaska

I’m not here to talk about my fantastic trip to Alaska, but rather to talk about the new scientific findings which will further predict the climate change battle. Previously, scientists believed that warmer-than-average temperatures can begin to melt glaciers, causing the sea levels to rise and cause disastrous flooding. Just recently, satellite image glacier research spearheaded by Romain Millan of Grenoble Alpes University in France has determined that glaciers hold 20% less water than previously thought. This means that, if all of the glacier ice were to melt, that the seas are predicted to rise 10 inches instead of 13 inches.

This is great news, right? Well, some could argue that less flooding means less disaster (landslides, wipe out infrastructure, etc), and that it’s good news. But it’s not, because even if the sea levels were to rise just a few inches lower, still 29% of the entire world’s population would be predicted to be immediately affected by flooding, and within a few days, 99.9% of the entire world’s population would feel the indirect effects through shortages or outages. In addition, less water quite literally means “less water.” 2 billion people currently rely on glaciers as their primary source of water, so “less water” would effect them through a drought. As

Parque estatal Chugach, Alaska, Estados Unidos, 2017-08-22, DD 94

Glacier at Chugach State Park, Alaska (which I too visited)

we’ve learned in AP Biology, water is one of the most, if not the most, important molecules to biological existence. A drought can affect human life from hundreds of angles, such as famine, or more immediately, dehydration. Water is extremely crucial to performing catabolic reactions such as hydrolysis, which we learned in AP Biology.

Factoring in mountaintop glaciers and their water content, Millan is able to determine the rate at which communities will run out of water. But for the non-alpine communities, these mountaintop glaciers are only a tiny drop in a large bucket. Millan’s research lacks one major component: the antarctic and arctic glaciers. If these unbelievably large ice fields continue to melt at the current pace, 90% of the United States is predicted to be underwater by 2050. To be honest, I believed this statistic was exaggerating until just recently. In Alaska, one of the glaciers named “Exit Glacier” had markers at the glacier’s terminus for each year. As I got closer to the glacier, I noticed the markers getting further and further away, signaling that the glacier was melting quicker and quicker. Take a look at the graph below, specifically how the year intervals begin to get smaller, and let me know how it makes you feel in the comments. Although it does not take a trip to Alaska to realize that climate change is really happening, new and emerging headline-worthy research like Millan’s is truly highlighting the immediate issue we all could face soon.

Exit Glacier Terminus Position From 1950-2020

 

 

Stop Mice-ing Around Gene Editing in Mitochondria Is Now Possible

Mitochondria is often nicknamed the powerhouse of cells. It consists of a double membrane, DNA, ribosomes, inner membrane surface area fold called cristae, an inner fluid-filled space called the matrix. Mitochondria can self reproduce and can move around cells and change shape. It is also the site of cell respiration.  

Mitochondrion structure

Structure of Mitochondrion

Mitochondrial DNA makes up only 0.1% of the human genome and is passed down exclusively from mother to child. There are around 1,000 copies of mitochondrial DNA in each cell.  A cell is heteroplasmic if it contains a mixture of healthy and faulty mitochondrial DNA. If a cell has no healthy mitochondrial DNA, it is homoplasmic.

 

Mistakes in mitochondrial DNA affect how well the mitochondria work. Often more than 60% of the mitochondria in a cell will need to be damaged or mutated for mitochondrial diseases like mitochondrial diabetes to emerge. These diseases are often severe and, in some cases, fatal. They affect around every 1 in 5,000 people. These diseases are incurable and largely untreatable. Well until now….

 

The MRC Mitochondrial Biology Unit at the University of Cambridge found a possible answer in 2018. They used an experimental gene therapy treatment in mice. There they discovered that in heteroplasmic cells, they were successful in targeting and eliminating faulty mitochondrial DNA. Dr. Michal Minczuk shares that this new research does come with a catch, “It would only work in cells with enough healthy mitochondrial DNA to copy themselves and replace the faulty ones that had been removed. It would not work in cells whose entire mitochondria had faulty DNA.” 

 

Pedro Silva-Pinheiro tells us, “This is the first time that anyone has been able to change DNA base pairs in mitochondria in a live animal. It shows that, in principle, we can go in and correct spelling mistakes in defective mitochondrial DNA, producing healthy mitochondria that allow the cells to function properly.” He, along with Dr. Minczuk and their other colleagues, have also used a biological tool known as a mitochondrial base editor. They use this to edit the mitochondrial DNA of live mice. The treatment works by it being delivered into the mouse’s bloodstream using a modified virus. It is then taken in by its cells. The editor looks for unique combinations of the A, C, G, and T molecules that make up DNA.  Next changes the DNA base, changing a C to a T. Mitochondrial base editor can correct inevitable ‘spelling mistakes’ that cause the mitochondria to malfunction.

 

A recent example of how this research had been used is mitochondrial replacement therapy, or other known as three-person IVF. Mitochondrial replacement therapy replaces a mother’s defective mitochondria with a healthy donor’s. However, this process is extraordinarily complex and happens in fewer than one in three cycles in standard IVF.

 

Optimus Prime, Megatron, Proteins? The New Transformer Vaccine Candidate!

Amid the global outbreak of COVID-19, with no end in sight after nearly two years, the future wellbeing of humans is in danger. Coughs, fevers, and shortness of breath have lent way to millions of deaths across the globe. As thousands of researchers relentlessly work to find solutions to this virus, multiple vaccine candidates have emerged. Specifically, in the United States, millions of Americans have received doses of the Pfizer-BioNTech, Moderna, and Johnson & Johnson’s Janssen vaccines. However, scientists at Scripps Research recently recognized a new, self-assembling COVID-19 vaccine as a potentially more efficient and effective way to fight this worldwide battle.

 

Primarily, it is critical to understand how vaccines function as they help protect the immune system. The COVID-19 vaccines currently in effect are mRNA-based; in other words, the messenger RNA signals one’s body to produce a harmless viral protein that resembles the structure of a spike protein. The body, with the help of T-Helper cells, recognizes this structure as a foreign invader as B cells bind to and identify the antigen. The T-Helper cells will then signal these B cells to form B-Plasma cells and B-Memory cells. When getting the vaccine, the B-Memory cells are especially important as they prevent reinfection. This is a process known as adaptive immunity. Here, in the event of future infection with the spike-protein COVID-19, the memory cells would help carry out the same response more quickly and efficiently. Essentially, this process acts as the body’s training in case of any future infections.

 

While the Scripps Research COVID-19 vaccine would evoke a similar immune response to that described above, it differs from other candidates in how it assembles in the human body; this new vaccine would be comprised of proteins that are able to self-assemble. On their own, these nanoparticle proteins would transform into a sphere protein structure surrounded by smaller proteins, mimicking the coronavirus’s shape. Here, the self-assembled spike proteins are more sturdy and stable than in an mRNA-produced structure. Thus, it more accurately prepares the body for future infection with COVID-19. In fact, multiple tests found that mice who were given the experimental vaccine were able to fight off not only SARS-CoV-2 but also SARS-CoV1 along with the alpha, beta and gamma variants.

 

Nonetheless, influencing the public to get a newer vaccine instead of the well-trusted vaccines already in production requires proof of the candidate’s benefits. Primarily, as mentioned, early results find that this new candidate would perform well with many different strains of COVID-19. Additionally, researchers assert that this vaccine would be relatively simple to produce on a mass scale. Lastly, scientists found that this vaccine may well be more protective and long-lasting than current vaccine candidates. Although the process of vaccine approval is lengthy and often difficult, I am hopeful for the future of the Scripps Research vaccine if it is put into production. Moreover, I believe that such experimentation with self-assembling nanoparticle proteins transcends the current pandemic. The benefits of this field present a wide array of opportunities, and I look forward to seeing what its future may hold.

 

What do you think? Are these transformer-like self-assembling particles a gateway to the future of medicine or an unnecessary distraction from effective treatments already in circulation?

Page 1 of 6

Powered by WordPress & Theme by Anders Norén

Skip to toolbar