Researchers at Linköping University in Sweden have made an incredible contribution to the field of medicine, specifically in wound care and infection detection that does not interfere with the patient’s healing process.
In medicine, wounds are typically treated with a dressing, which is changed often to avoid infection. In order to detect infection, healthcare providers have to frequently open the wound’s covering, which can be painful and can potentially disrupt the healing process. Additionally, each time the wound is opened, the risk of infection is increased. The researchers were alarmed by this issue, and developed a wound dressing comprised of nanocellulose that has the ability to display early signs of infection without further tampering with the wound or lifting the dressing. Daniel Aili, a professor involved in the study, has confidently stated that “being able to see instantly whether a wound has become infected, without having to lift the dressing, opens up for a new type of wound care that can lead to more efficient care and improve life for patients with hard-to-heal wounds. It can also reduce unnecessary use of antibiotics.”
The new wound dressing is made of a tight mesh nanocellulose material, which prevents bacteria and other harmful microbes from entering the wound. However, the mesh-like material allows airflow in, which is critical in the wound healing process. However, if the wound does become infected, the nanocellulose dressing will display a shift in color, notifying healthcare providers that the wound needs care. pH also plays a major role in this creation. Wounds that are not infected maintain a pH value of about 5.5. If an infection occurs, the wound starts to become basic and can increase to a pH value of 8, or higher. The increase in pH occurs because the wound’s bacteria shift their pH to properly fit their optimal growth environment. As we learned in AP Biology class, bacteria and enzymes have an optimal pH level to grow and function. If this level is not maintained, they cannot function properly. So, the bacteria increase their pH in response to infection if the optimal level is compromised. This elevated pH level in the wound can be detected by the nanocellulose dressing before any physical signs of infection.
In order to make the nanocellulose display infection with an elevated pH value, the researchers used bromthymol blue, a dye that reacts to a change in pH value. The bromthymol blue shifts from yellow to blue if the pH value increases past 7. The material of the bromthymol was then able to be combined with the dressing material without ruining the nanocellulose. As a result, the researchers successfully developed a safe-to-use, noninvasive wound dressing that will display a blue color if an infection occurs.
alindvall
"Hypotheoni, I'm currently enrolled in a graduate education course, and we were required to ..."
namurthy
"Hi Blakelement! The first line of your post was very attention grabbing! It ..."
namurthy
"Hi Lukewarm! That stats included in your post were shocking! It's crazy to ..."
namurthy
"Hi Lobiotic! I really like how your post connected to people in your ..."
namurthy
"Hi ITSALIVE! This is a really informative post about the higher rate ..."