Scientific researchers are always looking for ways to improve modern science and help create new treatments. Currently, CRISPR, “a powerful tool for editing genomes,” holds the ability to help advance medicine, specifically gene editing, so long as the kinks in this specific method are worked out. One of these problems is the DNA damage caused by CRISPR “activates the protein p53,” which tries to protect the damaged DNA. This raises not one, but two concerns as present p53 can diminish the effectiveness of this technique, however when there is no p53 at all cells grow rapidly and become cancerous. As we learned in AP Biology class, typical cells communicate through chemical signals sent by cyclins that ensure the cell is dividing the right amount. Cancer cells, however, contain genetic mutations that prevent them from being able to receive these signals and stop growing when they should. “Researchers at Karolinska Institute” have discovered that “cells with inactivating mutations of the p53 gene” have a higher survival rate when contingent on CRISPR. To further their research, they discovered genes with mutations similar to those of the p53, and also “transient inhibition” of the gene could help prevent “the enrichment of cells” that are similar. Although seeming antithetical, these researchers proved that inhibiting p53 actually makes CRISPR work better and prevent enrichment of mutated p53 and other similar genes. 

CRISPR logoDNA animation

           These results give crucial information, helping advance CRISPR and make it more usable in current medicine. Additionally, the researchers have uncovered the possibility that the damage CRISPR causes to DNA might be key in creating a better RNA sequence (the RNA sequence tells us the “total cellular content of RNAs”) guide, showing where DNA should be changed. In future tests, these researchers want to try and get a better idea of when the enhancement of mutated p53 cells from CRISPR becomes a problem.    

Print Friendly, PDF & Email