BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: #COVID

Why COVID-19 Messes With Smell and Taste

Have you ever wondered why only some people lose their smell when they contract covid-19? The answer to this question is more complicated then it seems. The real answer requires a deep dive into genetics and DNA.

Earlier in the pandemic we were told that if you were to lose taste or smell then this is a likely sign you have the virus. Now we are understanding that not all people have this “common” symptom. A study was done to show the true numbers behind this phenomenon. Out of 70,000 adults who contracted the virus, 11% of adults with a certain genetic makeup on chromosome 4 were more likely to lose their smell and taste. I then wondered how can one chromosome have an effect on losing taste?

I found my answer. As it turns out, the two genes: UGT2A1 and UGT2A2 are two genes that help people smell. These genes are located right next to chromosome 4 which is why these people are more prone to losing their smell when they contract the virus. Additionally, the actual pathways that cause our ability to smell and taste are over and under performing depending on the person. Similar to our Biology class, everyone has different sets of genes. Some genes can be closer to others. Therefore, only some people are affected by this lack of smell and taste if their UGT2A1 and UGT2A2 genes are closer to the location of the variant.

COVID-19 Icon

 

Pregnancy vs The Vaccine

Getting COVID as one person is already a risky and life-threatening experience, but imagine obtaining COVID while carrying another human inside of you! Though there are risks of getting the vaccine shots while pregnant, there are far more risks for the baby to be born unhealthy if the mother is unvaccinated. Why risk your baby’s life when there is an easily preventable way of avoiding the possibility of losing your child? 

The risks from developing COVID-19 when pregnant and unvaccinated were demonstrated in a recent study from Scotland. From December 2020 until the end of October 2021, a period when vaccines were available, there were 4,950 confirmed coronavirus infections among pregnant women. 77% percent occurred in those unvaccinated, along with 91 percent of the 823 hospital stays and all but two of the 104 intensive care admissions, researchers report January 13 in Nature Medicine.

209-pregnant-woman-2

Babies suffered too. The death rate for babies born within 28 days of their mother’s COVID-19 diagnosis was 22.6 deaths per 1,000 births, much higher than the rate for all newborns during the pandemic, 5.6 per 1,000. All of the babies who died over the course of the study were born to women who weren’t vaccinated when they got COVID-19, the researchers found. Scientists are still unraveling what’s happening behind the scenes during a SARS-CoV-2 infection in pregnancy, and why the delta variant was especially deadly for those expecting. The highest numbers of U.S. deaths for pregnant individuals, 40 in August and 35 in September, occurred during the delta surge. There aren’t details yet on how pregnant people fare after becoming ill with the now-dominant omicron variant. But experts don’t advise a wait-and-see approach. And the vaccines continue to offer protection against severe disease and death.

Pregnancy can be a risky time to get an infection in general. Influenza and malaria, for example, can be more severe in people who are pregnant than in those who aren’t. That risk is tied to changes in the immune system. “Pregnancy is a very complicated immune state,” says Andrea Edlow, a maternal-fetal medicine specialist at Massachusetts General Hospital and Harvard Medical School in Boston. The immune system needs to defend pregnant individuals and their fetuses against pathogens. If COVID is contracted by the mother while pregnant, then the baby in the womb will have to fight off COVID just as the mother has to. Learned in AP Biology, the mother has an advantage over the baby because the mother’s immune system has been exposed to more pathogens including bacteria, viruses, toxins, or other foreign substances that the baby hasn’t. In other words, the mother has adaptive immunity or acquired immunity, so after the first line of defense, known as innate immunity, is insufficient to control the infection, the adaptive response kicks into gear to try and fight off COVID. This puts the baby at severe risk of dying because its immune system is not fully developed yet, and hasn’t been exposed to any other pathogen before.  

There have been 169,407 cases of COVID-19 among pregnant individuals in the United States since the pandemic’s start, with a spike in late December of 2021 due to omicron. The counts for January 2022 are not yet complete. When the delta variant took over in the summer and fall of 2021, the risk of stillbirth grew, the study found. From March 2020 to June 2021, before delta, the risk was 1.5 times higher for pregnant women with COVID-19. From July to September of 2021, when delta reigned, there were 3,559 deliveries among women with COVID-19, of which 96, or 2.7 percent, were stillbirths. Of the 169,330 deliveries among those without the disease, 1,075, or 0.6 percent, were stillbirths. That’s four times the risk.

The first inklings that COVID-19 was especially dangerous for pregnant people came in the first year of the pandemic. Year two brought vaccines and plenty of research found COVID-19 vaccination was safe during pregnancy. More than 194,000 pregnant people in the United States have gotten COVID-19 vaccines as of January 31, according to the CDC. There have been no reported safety concerns. A study of close to 2,500 participants in a CDC COVID-19 pregnancy registry found no increased risk of miscarriage after vaccination, researchers reported in October of 2021 in the New England Journal of Medicine. Nor is there a risk of the baby coming too soon or too small, researchers report January 7 in Morbidity and Mortality Weekly Report. The U.S. study of over 40,000 pregnant women found no link between COVID-19 vaccination and preterm birth.

COVID-19 vaccines (2021) A

Even with the reassuring data on COVID-19 vaccination during pregnancy, it’s been hard to stamp out the uncertainty some feel about the shots. Other vaccines are routinely recommended in pregnancy, such as the influenza shot. But the COVID-19 vaccines were new, and pregnant people, as is standard practice, were excluded from the clinical trials that assessed the shots’ safety and efficacy. Excluding pregnant women from the trials can make it seem like “something must be wrong, this must be dangerous,” Edlow says. There were no safety issues among individuals who became pregnant during the trials, nor were there safety concerns in animal studies. Medical organizations said that COVID-19 vaccines shouldn’t be withheld due to pregnancy, but a forceful recommendation for vaccination didn’t come until July 2021.  

Though there has been hesitation from amounts of pregnant women about receiving the vaccine, at the end of the day they are just trying to protect their children from this very harmful and deadly virus, and the more knowledge they get from their doctors the more they understand that the best way for their child to be protected and healthy is if they get the vaccine.

 

Jet Injectors: Getting Your Vaccine Without Needles

Typically, when you get injections at the doctors office, whether it is a flu shot or any number of vaccines that one is advised to take, it is usually injected via syringe/needle. However, there is an alternative way to give people the medication required that doesn’t involve a needle. This is achieved by using a Jet Injector, and this may be more favorable for people who have trypanophobia.

Before understanding and diving into the Jet Injector, we should take a look at how the traditional needle injections work. These injections are doing through syringes. Syringes are “pump[s] consisting of a sliding plunger that fits tightly in a tube.” These syringes, in the medical field, are filled with some vaccine or other fluid that is meant for injection into the body. The syringe was invented in 1853, and is still the main form of medical injections today. These have been so popular and efficient that some people label syringes as the “greatest medical device of all time.”

I’m sure many are no strangers to this syringe, especially with the increased use of them due to their importance in being the delivery system for the COVID-19 vaccine. The syringe is used to get the mRNA vaccine into the blood stream. As talked about in our bio class lessons, the vaccines contents need to be able to reach cells (in this case within the arm) in order to instruct them to produce antibodies  that latch onto the spike protein of COVID-19.

Despite the syringe being widely used and very efficient, it is just not suitable for everybody. For some people they just have trypanophobia and prefer not to use it, while others are better off without it. This is where Jet Injectors come in. Jet Injectors are an alternative to a syringe that do the same job. Jet injectors use a “narrow, high-pressure stream of liquid [that] penetrates the outermost layer of the skin to deliver medication.” These Jet Injectors are either powered by springs or compressed gas (varies based on manufacturer). These found good use in the military as it required less maintenance to use than changing out the needle after each injection. Although that was a use of the Jet Injector in the past, they are currently used as an alternative to the syringe for injection Flu Vaccination.

Luckily, the side effects of the Jet Injector is similar to that of the syringe: soreness, bruising, itching, and redness. So, if you are someone who is not too fond of needles, the Jet Injector could be the solution for you if your doctor has one.

Omicron Variant: How Will it Affect the Vaccinated?

When looking back over the past 2 years, many think about the need for and effectiveness of the COVID-19 vaccines, but regardless of what many may think it has been proven that the COVID-19 vaccine is effective against the original variant of COVID-19 that was most prominent during the production of vaccines. However, what many people are wondering is if these vaccines & boosters are still effective against the Omicron variant?

Before going over the effectiveness of the current vaccines and booster shots on the Omicron variant, we first have to look at the Omicron variant itself. First off, we know that Omicron was “first identified [in] South Africa,” which is a place where full vaccination rates are at 25%: a low percent that is not high enough for herd immunity. Despite this, the Omicron is still viewed as a threat to more vaccinated communities. This is because in order for variants of COVID-19 to be labeled a variant, it needs at least one mutation to its spike protein, and Omicron has dozens of mutations to its spike protein, and the more mutations it has, the more potential it has to infect the vaccinated.

It is important to note that the COVID-19 vaccines help to produce antibodies that latch onto and render spike proteins inactive. Since this Omicron variant has dozens of mutations to its spike protein. As seen through activities and lessons learned in our Bio class, different variants of COVID-19 just have pieces of the protein structure changed, which leads to a changed shape of their spike proteins. This leads to existing vaccines being less effective as the original vaccine was meant for a specific spike protein shape, not the shapes of the new variants. The changes to the Omicron spike protein makes it very different to the original COVID-19 spike protein, so the vaccine will be less effective.

Even if a break through the vaccinations defenses doesn’t happen with the Omicron variant, “some version of this coronavirus is bound to flummox our vaccines.” Despite all of this information, we still know very little about the Omicron variant and its effects. It’s just too early to know what will happen. Because of this lack of information, it is important for people to make sure they are vaccinated and get their boosters as it does still make a difference. Overall, people, vaccinated or not, should err on the side of caution with this new potential threat of Omicron out there and should try to stay safe.

 

 

14 Days or 14 Months?

The Infamous “14-day” COVID-19 Illness Has Still Not Ended for Some.

Approximately one in four COVID-19 patients appear to have lingering symptoms, even after they have fully recovered from the virus, says the University of California Davis Health. Known as “Long Haul Covid,” it has been relatively unknown why each person’s immune response differs drastically. 

Feeling sick just two days after the world closed on March 11, 2020, my mom began to show all the symptoms of COVID-19. Tests were scarce, and by the time she was able to get one, it came back negative. However, she dealt with the severe and immediate symptoms of COVID-19 for six months straight. She maintained an on and off fever for months and has still not regained her taste or smell. Unsure of why everyone around her (including myself) contracted the virus and recovered after a mere 14 days, she searched for answers everywhere.

Luckily Dan Longo, Professor of Medicine at Harvard Medical School, published an article this past week in which he thinks he has discovered the reason. Antibodies mimicking the virus. You see, our body has a particular system for how it typically handles viruses.

When pathogens pass the body’s barrier defenses, they trigger innate cellular defenses. In the area of entry, Mast cells release histamine and macrophages (large phagocytic cells), which secrete cytokines. These cytokines attract dendritic cells, which engulf the bacteria (COV2 virus) and fuse it with a lysosome to break it down, preserving the foreign antigen (epitope). The dendritic cell will then display the foreign antigen on an MHC protein on the cell’s surface. A T-helper cell will then come and identify the foreign antigen. Now activated, the T-helper cells will release interleukin (a cytokine) to signal the beginning of the cell-mediated and humoral response. In the Cell-Mediated immune response, the T-helper cells will stimulate other T-cells to divide and create two types of cells. T-memory cells will circulate your body to prevent reinfection, and Cytotoxic T-cells will kill any infected cells. In the Humoral Response, B cells will bind to the antigen on the virus and recognize it, while selected B cells will be stimulated by T-helper cells and divide. The divided B cells will become B plasma cells whose job is to secrete antibodies that bind to and neutralize the pathogen. Or B-memory cells whose job, much like the T-cells, is to circulate the body, preventing reinfection. 

Primary immune response 1

In regards to COVID-19, however, why hasn’t our immune response been consistent for everyone? Longo’s article answers that by closely drawing upon the concepts of Nobel Laureate Niels Jerne’s Network Hypothesis, in which she states that, as usual, the B-plasma cells produce protective antibodies in response to an antigen. However, these same antibodies later trigger a new antibody response, only this time toward themselves. These secondary antibodies are called anti-idiotype antibodies, and they are created when one antibody binds to the set of unique epitopes of another antibody. These secondary antibodies bind to and deplete the initial protective antibody response, mirroring the original antigen itself. Quoted from Longo’s research partner UC Davis Vice-Chair of Research and Distinguished Professor of Dermatology and Internal Medicine William Murphy, “A fascinating aspect of the newly formed anti-idiotype antibodies is that some of their structures can be a mirror image of the original antigen and act like it is binding to the same receptors that the viral antigen binds. This binding can potentially lead to unwanted actions and pathology, particularly in the long term.” Binding to the ACE2 receptor, an angiotensin-converting enzyme identified as the receptor for the SARS-CoV-2 viral entry, the anti-idiotype antibodies could affect normal ACE2 functions. With a lack of research surrounding the theory, Murphy states that he believes some of the long-lasting effects of COVID-19 reported result from the critical tasks of ACE2 being tampered with. In terms of the vaccine, most of the research studies on antibody responses focus on initial protection instead of long-term effects. Thankfully, Longo concludes by saying that most of Murphy’s and his questions are testable and can be at least partially tested in their laboratory.

anti-idiotype antibody

It has been 21 months since my mom first contracted COV2, and thankfully she is doing much better. However, causing much frustration, she has not fully recovered. Similar to an autoimmune disease, she has periods where she feels fantastic and periods when she struggles. And so, while the information about Long Haulers Covid has increased dramatically, it is evident that there is still much to learn. 

LONG COVID

After the long sufferable weeks from catching COVID-19, you would think you are in the clear; until, that is, you feel some extra “health-issues”. The term for these health issues, specifically after COVID-19, are called Long Covid (post-covid). Generally “one in two [covid recovered people] experienced long-term COVID manifestations” and the symptoms included are a diverse field of sickness. Penn State investigators mentioned the trend of symptoms from 250,351 unvaccinated adults and children:

Loss of General Well Being (weight loss, fevers, fatigue)

Decreased Mobility (1 in 5 experienced a decrease in mobility)

Concentration Issues

Lung abnormalities (6 in 10 survivors tight chests and a quarter of patients had difficulty breathing)

Digestive Issues

What could be the reason that COVID-19 is still lurking around in our bodies when the sickness is gone? Researchers at Yale University studying long-COVID have found a pattern of patients having an “unusual level of cytokines” also known as a cytokine storm. Cytokines are a secreted chemical proteins released by cells for communication. In the Immune System process, after a Macrophage, large phagocytic cells, ingests an antigen it releases cytokines, signaling for a t-helper cell to come. After the helper t-cell recognizes the antigen, more cytokines are released and trigger the Cell-Mediated and Humoral Responses (B and T cells). I mention all this because researchers are saying that post-covid patients tend to have patterns of irregular, more-than average cytokines being produced as well as an “unusual pattern of activity by…t cells. The greater than average amount of cytokines suggests a “state of chronic inflammation” and “kill tissues and damage organs.” The unusual activity of t-cells suggests that COVID-19 could still be lurking in the body.

Cytokine Release

Cytokine release and the numerous amounts of it

The treatment for these conditions are mostly to take the vaccine but there are still many unknowns to this Long-Covid problem. These problems are mostly lying in the Immune System rather than other parts of the body that can be tested with machines; which is why solving this problem is very difficult. This problem can only be solved by a matter of time and hope the scientists can figure this out.

 

How does the Omicron variant of COVID-19 compare to the deadly Delta variant?

With news of the new variant of the COVID-19 virus reaching 16 states here in the US, many are asking: What is this Omicron variant?

The Omicron variant of COVID-19 was first reported to the World Health Organization by the Head of South African Medical Association, Dr. Angelique Coetzee. As of December 6, 2021, there are about 59,000 Americans hospitalized due to said variant.  The Delta variant, more than twice as contagious than previous variants according to the CDC, still continues to be the leading cause of COVID-related hospitalization and deaths today in the US and many other countries. However, medical experts are saying that Omicron has a few different key mutations that make it very likely to outperform Delta. How does this Omicron variant compare to the deadly Delta variant which we’ve been battling this year? Here are the main things you need to know.

Symptoms of the Omicron variant:

  • Fever or chills
  • Cough
  • Shortness of breath or difficulty breathing
  • Fatigue
  • Muscle or body aches
  • Headache
  • New loss of taste or smell
  • Sore throat
  • Congestion or runny nose
  • Nausea or vomiting
  • Diarrhea

Infection and Spread:

So far, people who have been diagnosed with the Omicron variant of SARS-Cov-2 in the US have or had mild symptoms, yet it is said to be much more contagious. Why? The difference in the structure of the spike proteinVariants of COVID-19 have mutations present in the spike protein due to copying errors in our DNA.

File:Omicron.jpg - Wikimedia Commons

Omicron Structure pictured

The Delta variant has 18 mutations in its spike proteins…Omicron has a whopping 43! That is many, many more than Delta. Jeremy Kamil, associate professor of microbiology and immunology at Louisiana State University Health Shreveport, said, “The number of changes blew people’s minds…It’s an exaggeration to say we’re back at square one, but this is not a good development.”

Around 30 countries have detected said variant so far; 19 states in the US have. The high number of mutations it contains does not necessarily mean it’s more dangerous. As previously stated, Omicron patients have thus far exhibited milder symptoms. Dr. Coatzee said that she first discovered Omicron’s appearance as her patients exhibited “unusual symptoms” in comparison to the Delta variant. However, don’t be too scared; experts say our immune systems have grown more equipped to fight the COVID-19 virus.

We still have yet to learn more about Omicron and its nature, infection, etc., as it is very new.

Free COVID-19 Illustrations - Innovative Genomics Institute (IGI)The original COVID-19 virus’s structure is pictured above

With Omicron having more than double the mutations as Delta, the likeliness of transmission/level of contagiousness is quite high–also meaning that the efficacy of our vaccine could be compromised. The Omicron spike protein has similar components that of the Delta, beta, and gamma variants, meaning that the rate of transmissibility is similar. With Omicron having the largest number of mutations, however, transmissibility can be increased more than 2x!

What should you do?

Well, continue to follow the standard COVID-19 measures. Wear a mask, social distance, wash your hands, travel less, and just be careful. These methods have proven time and time again to help. Travel restrictions on the rise can be tough with the holidays coming, but remember that they are only in place for the sake of our safety. It is important to follow these rules as the pandemic is not over.

Robert Malone: The Man Behind the Ideas for the COVID Vaccine

When you think of the COVID-19 vaccine, the first things that might come to mind are the companies that facilitate it (such as Pfizer & Moderna), if it is safe or not, or even that it is a new type of mRNA vaccine that is unfamiliar to many. However, people tend to overlook and not give any thought towards who made this all possible, and that person is Robert Malone.

Robert Malone, born in 1959, started his medical career at University of California Davis, and later got his MD from Northwestern University. After Malone’s traditional education at both an undergraduate and graduate level, he conducted research at the Salk Institute for Biological Studies.

Salk Institute (19)Salk Institute for Biological Studies

During his time at the Salk Institute, Robert Malone performed a “landmark experiment.” In this experiment, Malone mixed strands of mRNA with droplets of fat (lipids). Human cells reacted with this mRNA lipid mix and began producing proteins from it. Robert Malone had some foresight and realized that this discovery has some potential in the medicinal world. He decided to jot down some notes, stating that if cells could create proteins from mRNA delivered to them that it might be possible to “treat RNA as a drug (written January 11, 1988).”

These revelations from Robert Malone had a huge contribution towards the mRNA COVID-19 vaccines.

COVID-19 Vaccine vial and syringe - US Census

After seeing all of this information on how Robert Malone made scientific contributions towards the COVID-19 vaccine, it is important to show how it works. Since we know (as seen in Malone’s experiments) that mRNA mixed with lipids that enter a human cell can lead to the production of proteins, scientists just had to tweak the mRNA until it could create pieces of “spike protein.” These pieces of spike proteins would have to match the shape of the spike proteins found on the surface of the COVID-19 virus. This required an impressive feat of biomedical engineering, but it was done.

Robert Malone’s work did not just contribute to the first strand of COVID-19 discovered, but his work applied towards different variants as well.

Corona virus Covid-19 BW

The idea of spike proteins and how spike proteins can be counteracted through an mRNA vaccine applies to all different variants of COVID-19. As seen through activities and lessons learned in our Bio class, different variants of COVID-19 just have pieces of the protein structure changed, which leads to a changed shape of their spike proteins. This leads to existing vaccines being less effective as the original vaccine was meant for a specific spike protein shape, not the shapes of the new variants. This means that mRNA vaccines are still very much effective towards different variants of COVID-19, but they would have to be modified mRNA vaccines.

Despite all of this, Robert Malone’s research’s applications might not stop at the COVID-19 vaccine. The COVID-19 vaccine was able to show us the power of mRNA vaccines, so it is not unreasonable to be expecting more mRNA vaccines in the future.

Mutation in the Nation

We constantly think of SARS-CoV-2, the virus that causes COVID-19, as a single virus, one enemy that we all need to work together to fight against. However, the reality of the situation is the SARS-CoV-2, like many other viruses, is constantly mutating. Throughout the last year, over 100,000 SARS-CoV-2 genomes have been studied by scientists around the globe. And while when we hear the word mutation, we imagine a major change to how an organism functions, a mutation is just a change in the genome. The changes normally change little to nothing about how the actual virus functions. While the changes are happening all the time since the virus is always replicating, two viruses from anywhere in the world normally only differ by 10 letters in the genome. This means that the virus we called SARS-CoV-2 is not actually one species, but is a quasi-species of several different genetic variants of the original Wuhan-1 genome.

The most notable mutation that has occurred in SARS-CoV-2 swapped a single amino acid in the SARS-CoV-2 spike protein. This caused SARS-CoV-2 to become significantly more infective, but not more severe. It has caused the R0 of the virus, the number of people an infected person will spread to, to go up. This value is a key number in determining how many people will be infected during an outbreak, and what measures must be taken to mitigate the spread. This mutation is now found in 80% of SARS-CoV-2 genomes, making it the most common mutation in every infection.

Glycoproteins are proteins that have an oligosaccharide chain connect to them. They serve a number of purposes in a wide variety of organisms, one of the main ones being the ability to identify cells of the same organism.  The spike protein is a glycoprotein that is found on the phospholipid bilayer of SARS-CoV-2 and it is the main tool utilized in infecting the body. The spike protein is used to bind to host cells, so the bilayers of the virus fuse with the cell, injecting the virus’s genetic material into the cell. This is why a mutation that makes the spike protein more efficient in binding to host cells can be so detrimental to stopping the virus.

In my opinion, I find mutations to be fascinating and terrifying. The idea that the change of one letter in the sequence of 30,000 letters in the SARS-CoV-2 genome can have a drastic effect on how the virus works is awfully daunting. However, SARS-CoV-2 is mutating fairly slowly in comparison to other viruses, and with vaccines rolling out, these mutations start to seem much less scary by the day.

 

CRAZY NEW COVID-19 Mutation Makes Virus Weaker Against Antibodies

As revealed in a fascinating article that details a study conducted by the University of North Carolina at Chapel Hill, a mutated form of the virus has been discovered to be much more susceptible to antibodies produced by antibody drugs. This means that it is more easily disabled by antibodies produced by drugs such as the new vaccine. However, this may not all be good news as this new strain, called D614G, is also much more transmissible. D614G originated in Europe and has quickly become the most prevalent form of the virus. According to professor of epidemiology at UNC Ralph Baric, “The virus outcompetes and outgrows the ancestral strain by about 10-fold and replicates extremely efficiently in primary nasal epithelial cells, which are a potentially important site for person-to-person transmission.” These nasal epithelial cells act as a physical barrier against any pathogens attempting to enter the body and play a significant part in the control of the innate and acquired immune response. As we learned in biology, one method of innate immune response that our bodies have is mucous that traps pathogens. The nasal epithelial cells contain cilia that act to push the mucous and the pathogen contained inside out of the body. This means that if this new virus reproduces exceptionally well within the nasal epithelial cells, then it is extremely transmissible through any expulsion of mucous by either sneezing or coughing. It is also far more capable of bypassing the barrier of the mucous and entering the body. These epithelial cells also help the innate immune system by producing various cytokines. If a virus manages to make it past the barrier defenses, the epithelial cells will secrete cytokines. These cytokines will attract a type of cell called a neutrophil that digests pathogens. This means that these nasal epithelial cells are vital to the innate immune response and having a virus strain reproduce so effectively inside of them is extremely worrying.

The researchers believe that D614G is so effective at reproducing because it increases the virus’ ability to enter cells. The D614G mutation opens a flap on the tip of one of the spikes on the side of the virus which allows it to infect cells more effectively. However, this mutation also creates a weakness in the virus. When the flap is open, it becomes much easier for antibodies to bind to the spike proteins, preventing the virus from attacking additional cells.

Two researchers from the University of Wisconsin contributed to this study by experimenting with hamsters. To test the airborne aspect of this mutation, the hamsters were placed into different cages and groups so they could not touch and inoculated with either the original strain or D614G. By day two, in the group exposed to the mutation, six out of the eight hamsters were infected with D614G. In the group of hamsters exposed to the original virus, no additional hamsters were infected by day 2. This shows that this D614G is extremely effective at being transmitted airborne. However, the mutation had the same symptoms and effects as the original virus meaning it is not more severe. The researchers have also noted that these results may not be the same in human studies. I think that this study is equal parts of good and bad news. I am glad that the most prevalent form of the virus is much easier to deal with, but it is quite terrifying that it could mutate to be so much more contagious. How do you feel about this new development? Let me know in the comments. 

Testing!

When you hear the word “COVID -19 testing” what comes to mind? I have this vivid image of a cotton swab being pushed up my nose. But what exactly is testing? Why is it so important? And what are the types of testing available for our use?

We’ve all heard that testing is important but why? To summarize a supplementary article, COVID testing “leads to quick identification of cases, quick treatment for those people and immediate isolation to prevent spread” (Dr. Eduardo Sanchez). When discovered at an early stage, COVID will be less a threat to a person because doctors can plan accordingly while COVID is still less severe. Even when a person discovers they have COVID not as early as hoped, testing helps to identify anyone who came into contact with infected people so they too can be quickly treated. Contact tracing would not be possible without testing because a person would never know if they are spreading the virus. The only way to be better safe than sorry is to get tested. Someone may show symptoms that are COVID-like but there is still a chance that it could be a common cold, or allergies. It is important to confirm COVID suspicion.

Now that we know why testing is important, what kind of testing is out there? What I found in this FDA article is what I like to call a family of tests; there are numerous different tests to take.

To start things off, let’s talk about Diagnostic testing. Diagnostic testing shows if you have an active coronavirus infection. As of right now, there are two types of diagnostic tests: molecular and antigen tests. Molecular tests detect the virus’ genetic material in a sample from the patient’s nose or throat. This is where test results will take longer because they are sent to labs. From there, the lab essentially converts the virus’s RNA into DNA, and then make millions of copies of the DNA to be processed in a machine. The test is “positive” for infection with SARS-CoV-2, the virus that causes COVID-19. Examples of molecular diagnostic tests include nucleic acid amplification test (NAAT), RT-PCR test, and the LAMP test. Next, there is Antigen diagnostic testing. Antigen tests provide results from an active coronavirus infection faster than molecular tests. The downside to these tests are that they have a higher chance of missing an active infection. Sometimes an antigen test may come back negative, but a doctor might still order a molecular test to confirm.

Different from Diagnostic Tests, there are Antibody (different from Antigen) tests. These tests looks for antibodies that are made by your immune system in response to a threat, such as a specific virus. As we learned in biology class, antibodies can help fight infections. These tests are taken by finger stick or blood draw, and the results are quick. The antibody test only shows if you’ve been infected by coronavirus in the past. But do antibodies help diagnose COVID-19? As we learned in class about the Immune System, our body can fight pathogens, bacteria, and viruses that we have been previously exposed to. While this was a popular belief earlier on in the year, sadly, researchers do not know if the presence of antibodies means that you are immune to COVID-19 in the future. It is possible to contract COVID-19 for a second time, therefore adaptive immunity does not apply.

The most common testing that I knew of before researching was rapid testing. Rapid testing can be both a molecular or antigen diagnostic; a doctor uses a mucus sample from the nose or throat. The test can also be taken at home only by prescription of a doctor. The results are available in minutes. There is also saliva testing where a person can spit into a tube; this also keeps the doctor or worker safer from the potentially infected person.

Testing is the best way to keep yourself and those around you safe. While testing is still not 100% accurate, there is currently no better way to confirm if someone has COVID-19 unless he/she get tested. With this pandemic, we can never be too safe!

 

 

 

 

 

LION: The King Of The COVID Vaccines

As the SARS-CoV-2 virus (also known as COVID-19) continues to rage across the world killing millions, more time, effort, and money is being put into researching the best vaccines to help bring the world back to a state of normalcy.  One such vaccine is being developed at the University of Washington using replicating RNA is called LION (Lipid InOrganic Nanoparticle). In its animal trials in July, the vaccine already found some success inducing “coronavirus-neutralizing antibodies” in mice young and old which has given researchers a lot of hope for the future of the vaccine.

 

One might wonder, why do we need a vaccine at all? Vaccines are used to expose your body to small doses of a virus or in this case by mRNA, which teaches your body to produce the antibodies needed to fight the virus and makes memory cells. The next time you are exposed to the virus, your body will be able to produce the necessary antibodies to a much larger degree, much quicker, for longer so you will be protected from becoming sick.

One of the lead researchers on LION, Professor Deborah Fuller of the University of Washington School of Medicine qualified the goals of a successful COVID-19 vaccine saying it, “will ideally induce protective immunity after only a single immunization, avoid immune responses that could exacerbate virus-induced pathology, be amenable to rapid and cost-effective scale-up and manufacturing, and be capable of inducing immunity in all populations including the elderly who typically respond poorly to vaccines.” This is quite a lot to accomplish but LION lends itself very well to these goals, conquering most of the problems a typical DNA vaccine would have. DNA vaccines work by coding for the antigens which are then exposed to the immune system to create memory cells so the body can treat the virus later. The downsides of a DNA vaccine is sometimes those antigens fail to create an immune response or can even cause the cell to become cancerous when the DNA joins the host cells DNA, disrupting it. There is far less risk with RNA vaccines which occupy the cytoplasm and only interact with ribosomes.

Shown above us a basic drawing of what SARS-CoV-2 virus looks like.

LION is a replicating RNA vaccine, but how does replicating RNA work? RNA codes for spike proteins and ribosomes in the body make the necessary proteins. Replicating RNA allows for more spike proteins and ribosomes to be coded at a greater rate, which produces a greater number of proteins continuously while triggering “a virus-sensing stress response that encourages other immune activation.” For the vaccine the RNA replicates proteins that tell the body to reject the SARS-CoV-2 and attack them “with antibodies and T cells”  which stop the protein spikes on the virus from interfering with the cell. The development of B cells, which remember how to make the antibodies to fight the virus when infected again, as well as T cells is especially critical for the vaccine as they can develop immunity to the SARS-CoV-2 antigens. What makes the LION vaccine special is the nanoparticle it is named after which “enhances the vaccine’s ability to provoke the desired immune reaction, and also its stability.” This makes it more valuable than other vaccines of the same kind as it can achieve effective results with a longer shelf life. It can also be mixed simply using a two vial method as the mRNA component is made separately from the main vaccine formulation. For all these reasons, the scientists are optimistic as the vaccine goes into the next stages of testing that this vaccine could help provide a long term solution to the COVID-19 pandemic.

As COVID-19 vaccines start becoming available to essential workers in the coming weeks and my father prepares to take one, it can be quite unnerving to think about all the potential negative side effects of the vaccine. These vaccines have been developed without the typical ten years of testing, so knowing more about the research behind the vaccines serves as a comfort me and many others. Our future is in these vaccines and research so knowing which we should invest our time and money in is always a good idea.

ARE WE DOOMED? Maybe not

     Well, this year has been a ride. Starting off with a potential WWIII, continuing with the tragic loss of hall of fame athlete Kobe Bryant, 2020 has been one roller coaster of a year. But the most bizarre of it all was the COVID-19 pandemic. The pandemic swept the nation way back in March and it still has its grasp on us today. At the time it started, there was very little information on this virus. But now, due to our vast intricate technologies, we were able to find out lots of information on this virus. But, specifically, I want to talk about life after contracting the virus. See, normally when you have a virus and successfully heal from it, you develop antibodies so you will not get this type of virus again. The case is a bit different for COVID-19, or it might be the same. Read to find out!

     This topic is very interesting because there have been more than 10 million people who have acquired the virus. The people that have successfully recovered from the virus want to know the main question: Will I be able to get this virus again? The answer isn’t so simple. Early on the data provided to us gave us hope that the immunity to this virus was possible, but numerous cases also suggest that this immunity to the virus is brief (on a larger scale). Nothing is definite as of now, there is more research to be done, but for now we remain hopeful. 

 

So why do we say the immunity to the virus is brief?

     We know there is hope because there is proof that people who have contracted COVID-19 produce antibodies that protect our immune system, but this production of antibodies lasts maybe 3 to 4 months based on the data provided. The length of time still remains unclear. 

 

So how does this actually work?

     Researchers from Massachusetts General Hospital tested three types of antibodies in blood samples: immunoglobulin G (IgG), immunoglobulin A (IgA), and immunoglobulin B (IgB). Immunoglobulin is a large Y-shaped protein used in the immune system to detect foreign invaders in the blood such as viruses. These proteins bind to these foreign invaders in order to fight them off. We learned from our unit with proteins that antibodies are a form of proteins that can influence the life of a molecule/virus. The most important of all the immunoglobulins stated above is IgG. The reason is because IgG has the potential to sustain immunity in the body. This is because when all three of these antibodies were found in the blood after being infected by COVID-19, IgA and IgB were obliterated by the spike protein found in COVID-19. But, IgG lasted in the stream for up to four months! Now, the researchers could not test IgG for that long, but the four months that they could observe showed that these IgG antibodies do persist to beat the virus! A more long term study is definitely needed. This study is also confirmed by another research group from the University of Toronto. This group also showed how IgA and IgB levels dropped rapidly about 12 days after infection while IgG levels remained steady. 

 

So can you get COVID more than once?

     Although it is very rare, there have been some cases where people contracted the virus more than once. But, there is no evidence that suggests that immunity is or is not possible. All in all, evidence shows that immunity after acquiring the virus is generally protective and the persistence of the IgG antibody provides hope for immunity to the virus. – Ghohesion

Powered by WordPress & Theme by Anders Norén

Skip to toolbar