BioQuakes

AP Biology class blog for discussing current research in Biology

Author: marychondria

Gut bacteria effects the development of allergies!

Have you wondered why some people have allergies and some don’t? Well, researchers have found that the lack of certain gut bacteria can play a role in the development of allergies and autoimmune diseases.

Cornell Medicine researchers have uncovered an intriguing connection between gut bacteria and early immune system development. Their study, published in Science Immunology, reveals that certain bacteria in newborns produce serotonin, a neurotransmitter crucial for educating gut immune cells, particularly T-regulatory cells (Tregs). Tregs, or regulatory T cells, are a specialized subset of white blood cells that suppress immune responses to maintain immune tolerance and prevent autoimmune diseases. Tregs play a vital role in preventing allergic reactions to food and gut microbes during infancy. The findings shed light on the importance of beneficial gut bacteria in early immune system training and may offer insights into combating allergies and autoimmune diseases later in life.

This relates to AP bio through the importance of neurotransmitters in this research. In AP bio, we learned how neurons transport messages using a process involving neurotransmitters. In the process of transport for neurons, neurons communicate messages through a sequence of events involving electrical and chemical signals. When stimulated, a neuron generates an electrical impulse known as an action potential. This action potential travels along the neuron’s length, eventually reaching its terminal branches called axon terminals. Here, neurotransmitters are released into the synapse, the gap between neurons. These neurotransmitters bind to receptors on the neighboring neuron, causing changes in its electrical potential. If the combined effect of these changes reaches a certain threshold, it triggers the generation of a new action potential in the receiving neuron. This process repeats, allowing messages to be relayed from neuron to neuron throughout the nervous system.

Wow! It’s so fascinating how a person’s levels of certain bacteria can influence whether or not a person has allergies. I wonder how else can bacteria can influence a person’s health?

COVID CHANGES THE IMMUNE SYSTEM!?!

File:SARS-CoV-2 (CDC-23311).png

In 2019, a new strain of SARS-coV-2 took the world by storm, sending millions of people into quarantine. While the past few years have seen the virus’s spread ultimately be controlled, the people continue to be infected today—I know this personally as last month I got COVID. Luckily my COVID was very mild, but for many people, the same can’t be said. Unfortunately, in addition to the terrible symptoms that one might have during their Illness, recent research has found that severe COVID-19 could cause long-term immune system changes.

This recent research found that severe COVID-19 causes long-term effects on specific cells responsible for our immune system. They found that a chemical, IL-6, changes how genes are expressed and impacts how cells work as a result. The cells called hematopoietic stem and progenitor cells (HSPC), undergo lasting changes in their characteristics and how their genes are regulated (epigenetic programs). These changes persist for months to a year and result in altered activities of transcription factors (proteins that control gene expression), modifications in how inflammation is regulated, and increased production of certain immune cells (myelopoiesis). The altered HSPC makes so many changes because HSPC, or stem cells, are the only type of cell that can differentiate or repair specialized types of cells.

 

This research is related to AP BIO because the article talks about COVID-19 influences epigenetics (how genes are turned on or off because of environmental factors) and in AP BIO we talked about how proteins are able to be made because of the information on the DNA. In protein synthesis in a cell, the first step is transcription where information on the DNA is transcribed onto mRNA. The mRNA then is sent to the Rough Endoplasmic Reticulum where it is received on the cis face. Then the ribosomes of the rough ER, the protein is synthesized. The type of protein that is synthesized here is determined by the information of the mRNA. Then the protein is sent to the Golgi where, based on the information from the mRNA, molecules are added to the protein to determine its final location.

undefined

This AP BIO information relates to the research because the research is about how a chemical changes how DNA is expressed, this information from AP BIO explains why DNA is important.

Wow! That was so interesting! Reading about epigenetics has made me wonder: what other conditions can influence how DNA is expressed?

 

Sour Science!

Have you ever enjoyed an orange and wondered what causes its amazing citrus flavor? Well, scientists have recently discovered the origins of citrus’s sour taste. 

Scientists have recently discovered the origins of citrus fruits like oranges and lemons. In their study, they discovered a specific gene, PH4, that influences the fruits’ taste by regulating the fruits’ citric acid levels. Additionally, the researchers traced the fruits’ evolutionary journey from the Indian subcontinent to south-central China over millions of years and discussed influences that environments may have had on the citrus.

There are many reasons why these fruits evolved the way they did. One reason discussed in the article is human interference through selective breeding. Thousands of years ago, humans selectively bred certain types of citrus for food and medicinal purposes. Another reason they might have evolved to have more citric acid is to prevent bacterial infections. Bacteria, generally, prefer neutral environments with a pH of about 7. o.  Citric acid has a pH of about 3.2. Therefore, the more citric acid a fruit has the less likely bacteria can infect the fruit.

This relates to AP Bio through the involvement of genes in protein synthesis. During protein synthesis in a cell, the first thing that happens is transcription where information on the DNA is transcribed onto mRNA. The mRNA then is sent to the Rough Endoplasmic Reticulum where it is received on the cis face. There, on the ribosomes of the rough ER, the protein is synthesized. The type of protein that is synthesized here is determined by the information of the mRNA. Then the protein is sent to the Golgi where, based on the information from the mRNA, molecules are added to determine the final location of the protein. Genes, including PH4, are sections of DNA. Therefore, the PH4 gene, in part, determines what type of proteins are produced by the cell and where they go.

Wow! It is fascinating how a gene can influence an orange’s taste. I found this research so interesting because I love oranges. I wonder how other plants’ genes influence their taste?

Powered by WordPress & Theme by Anders Norén

Skip to toolbar