BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: bacteria (Page 1 of 4)

Memory Card Plugged in for Future Generations of Bacteria?

E. coli BacteriaHave you ever thought about the ability of being born with knowledge? It sounds like a plot out of a science fiction novel, yet recent research discovered that Escherichia coli (E. coli) bacteria, despite not having a brain, are able to remember past encounters with nutrients and pass this information down to their future offspring. This discovery not only surprises microbial behavior scientists but also reveals the challenge behind the fight against antibiotic resistance.

Swarming of Bacteria
George O’Toole, a microbiologist at Dartmouth College, explains that while “we typically think of microbes as single-celled organisms,” they actually operate in collective units or swarms. Interestingly, when they move in swarms, they become stronger against Antibiotics because there are more of them close together. According to this article from Missouri Department of Health and Senior Services that explain what is Antibiotic resistance, the reason E. coli bacteria become stronger against antibiotics when they are close together in swarms is due to their biological mutations, DNA exchange, and rapid reproductions. Mutations are essential to evolution, they can bring genetic variation (good or bad) to a specie. Because of the vast number of bacteria present and their high reproduction rate, many mutations can occur in a swarm of bacteria. Through random mutations and selection, bacteria can develop defense mechanisms against antibiotics. After some bacteria have developed some anti-antibiotic genes, bacteria will actively swap bits of DNA among both related or unrelated species. Thus, antibiotic-resistant genes will spread rapidly among a swarm of bacteria and can can even be incorporated into other species of bacteria. Finally, given the fast reproduction speed of bacteria, it does not take long for the antibiotic-resistant bacteria to fill up a huge portion of the bacteria population, therefore disabling/nerfing the effects antibiotic drugs.

Collective Memory of E. coli
A team of scientists, as reported in the Proceedings of the National Academy of Sciences USA, found that E. coli bacteria swarms have a form of memory that correspond to their exposure to nutrients. This experiment, led by Souvik Bhattacharyya from the University of Texas at Austin, observed unusual patterns in E. coli colonies. Through deeper examination with his science team, they concluded that these bacteria acted differently because of their previous experiences. Specifically, bacteria from colonies that had swarmed before were more likely to swarm again. This behavior was passed down to their descendants for four generations, suggesting a genetic memory of past actions in the bacteria.

Diagram of a gene on a chromosome CRUK 020.svg
By Cancer Research UK – Original email from CRUK, CC BY-SA 4.0, Link

Genes that are Responsible for this Behavior:
Further investigation was conducted to this phenomenon concluded that two genes responsible for iron uptake and regulation is the keys to bacteria’s memory. Bacteria with lower levels of iron, an essential nutrient for them, are more likely to move collectively(in swarms) to find environments with higher level of iron concentration. In addition to the past research that shown that many bacteria can remember and pass to their offspring of the description of their physical surroundings, this study suggests that bacterial can also remember and pass to their offspring about nutrients’ presence. This ability of bacteria to remember and pass on knowledge about physical surroundings and nutrient existence demonstrates bacteria’s evolution journey. 

Purpose? 
This research increases our understanding of microbial life, showing that bacteria like E. coli can remember more the physical environments and can also recall the presence of nutrients. These memories will affect their decisions on where to settle and can increase their chances of surviving and fitness. O’Toole believes that this mechanism of bacterial memory is probably not exclusive to E. coli; it can actually be a common mechanism that exists among many different types of bacteria. The insights gained from studying these E. coli at a molecular level can provide valuable context for the development of antibiotics, offering new approaches as traditional antibiotics will eventually lose their effectiveness. 

Connection to AP Bio
In AP Biology, we’ve learned about Cell Signaling molecules and mechanisms used by organisms. Bacteria can also communicate amongst them when they are close together through a process called Quorum Sensing. Bacteria will secrete small chemical signaling molecules which will be detected by other bacteria nearby using their receptors. Through Quorum Sensing, bacteria are able communicate with others of their kind, sharing information about bacteria density and adjust gene expression accordingly. In addition, we will also be covering information about DNA, Heredity, and Evolution during this year in AP biology, which are also significant themes in this post. Numerous mutations will occur in swarms of bacteria due to their large number, this mutation of their DNA can occasionally cause significant change. If this change is extremely positive and can do this bacteria good, through natural selection, this gene will be kept and pass on to future generations of bacteria so that more and more bacteria will have this trait. This is the reason behind my antibiotics are slowly losing their functions. More and more bacteria have mutated and can resist the effects of antibiotic drugs.

What are your thoughts?
A couple of years ago, I often watched cartoons that portrays a type of technology that can give knowledge and pass memory to a newborn baby. I thought that it was a fascinating and unrealistic idea. However, during my research, I surprisingly found out that bacteria seemed to have this ability to pass on their memories to their offspring. What are your views about bacteria’s ability to memorize and pass their memories on to future generations? Do you think this experiment is helpful to future development of antibiotics? Feel free to leave a comment below and we can discuss more about this topic! For more information on this post, go to ScientificAmerican.com for the latest research and updates.

1.78 Billion Year Old Bacteria: the Origins of Photosynthesis

E. coli Bacteria (7316101966)

Pretty music everyone is aware of the term photosynthesis. We identify photosynthesis as the process plants take to make food by utilizing the sun’s energy. New findings take us back in time to the earliest signs of this process. The article published on January 3 2024 reveals that bacteria fossils hold some of the oldest signs of machinery required for photosynthesis. Cyanobacterias’s invention of photosynthesis is responsible for the oxygen in Earth’s atmosphere which is a large sum of information derived from fossils. 

The bacteria fossils are compression of carbon that don’t contain any mineralized structures such as bone or shells. The fossils also revealed that there are complex structures inside of the microscopic bacteria such as thylakoids which are located inside of the chloroplast and allow photosynthesis to take place. It is exciting to see such old thylakoids inside of the bacteria fossils but it is not unheard of as some researchers believe that thylakoids may have evolved before the Great Oxidation Event which occurred around 2.4 billion years ago and marked a significant increase in Earth’s oxygen levels.

During the period that the bacteria fossils lived in, oxygen levels in Earth’s atmosphere were at a fraction of today’s levels which helps explain why the fossils hint that there may have been small pockets where oxygen was abundant, possibly allowing the evolution of the ancestors of plants and animals. Most of the rocks that scientists believe may harbor fossils similar to the ones discovered have been compressed destroying intracellular structures like thylakoids which makes the findings even more rousing. 

A similar article published the following day identifies the bacteria fossils to be between 1.73 and 1.78 billion years old. Furthermore, the article points out that prior to this discovery, the presence of thylakoids in cyanobacteria was traced back to only around 600 million years ago, but now the earliest evidence of thylakoids in cyanobacteria is 1.2 billion years older. The fossils are also defined as Navifusa Majensis, a presumed type of cyanobacteria. N. majensis fossils add a vital data point in the timeline that aims to discover the exact timing of oxygenic photosynthesis’s evolution.

A second article published on the same day explains that the bacteria fossils “were laid down in mud and squeezed as the mud was transformed into shale over time.” The intriguing part, though, is that the internal structures of the cells were preserved throughout this process. 

To help further explain the job of thylakoids in plant cells, in AP Biology class, we learned about the specifics of the chloroplast, the organelle in plant cells that is responsible for photosynthesis and plants green color. Furthermore, we learned that grana, located below the inner membrane of the chloroplast, are stacks of thylakoids. A large surface area of thylakoid disks results in better productivity in the cell. In the article linked in the previous paragraph, astrobiologist Emmanuelle Javaux is referenced as speaking about “dark lines stacked through tiny sausage-shaped cells” that they believe represent thylakoids. An image in the Cells Notes Packet displays the same description that Javaux is providing with dark rectangles being spread across an image of the chloroplast. 

I believe that these new findings are a great advancement in the mystery that is the evolution of photosynthesis in plants. These findings are one of the first steps of discovering the exact timing of oxygenic photosynthesis’s evolution. I look forward to seeing if more fossils are discovered with thylakoids and other complex structures still intact, what do you think?

 

From Bacteria to Biotech: The Surprising Similarities in Immune Systems

Bacteria have always been considered harmful and something to be avoided, but according to a recent study by the University of Colorado Boulder, bacteria might just hold the key to unlocking novel approaches to treating various human diseases. The research reveals that bacteria and human cells possess the same core machinery required to switch immune pathways on and off, meaning that studying bacterial processes could provide valuable insights into the human body’s workings. Moreover, researchers found that bacteria use ubiquitin transferases – a cluster of enzymes – to help cGAS (cyclic GMP-AMP synthase) defend the cell from viral attack. Understanding and reprogramming this machine could pave the way for treating various human diseases such as Parkinson’s and autoimmune disorders.

CRISPR, a gene-editing tool, won the Nobel Prize in 2020 for repurposing an obscure system bacteria used to fight off their own viruses. This system’s buzz reignited scientific interest in the role proteins and enzymes play in anti-phage immune response. Aaron Whiteley, senior author and assistant professor in the Department of Biochemistry, said that the potential of this discovery is much bigger than CRISPR. The team discovered two key components, Cap2 and Cap3 (CD-NTase-associated protein 2 and 3), which serve as on and off switches for the cGAS response. Understanding how this machine works and identifying specific components could allow scientists to program the off switch to edit out problem proteins and treat diseases in humans.

CAS 4qyz

This discovery opens new avenues of research as bacteria are easier to genetically manipulate and study than human cells. Whiteley said that the more scientists understand about ubiquitin transferases and how they evolved, the better equipped the scientific community is to target these proteins therapeutically. The study provides clear evidence that the machines in the human body that are important for just maintaining the cell started out in bacteria, doing some really exciting things. The ubiquitin transferases in bacteria are a missing link in our understanding of the evolutionary history of these proteins. Thus, this research shows the importance of studying evolutionary biology, and how it can provide valuable insights into human health.

The study highlights the similarities between bacteria and human cells in terms of their immune response, specifically, describing how cGAS (cyclic GMP-AMP synthase), a protein critical for mounting a downstream defense when the cell senses a viral invader, is present in both bacteria and humans. This similarity suggests that portions of the human immune system may have originated in bacteria, a concept explored in the evolutionary biology unit. In this past unit, we discussed the origins of life, and how all life originated from a simple bacteria cell. This bacteria cell, though many many many repeated cycles of evolution and natural selection allowed for variation within its species and the formation of new species through the processes of speciation.

Is Nobel Prize-Winning CRISPR Technology as Sound as Scientists Say?

CRISPR—short for ‘clustered regularly interspaced short palindromic repeats’—is a nobel-prize winning scientific advancement in genetic modification technology. It was initially developed by Dr. Jennifer Doudna of Harvard University, and is based on the naturally occurring gene-editing system found in bacteria. Researchers now use this new method to modify the DNA of various organisms, potentially being able to make advancements in disease treatment, improving resilience of crops, correcting genetic defects, and more. 

CRISPR-Cas9 Editing of the Genome (26453307604)

To make an understatement, the introduction of CRISPR into the scientific community has been nothing short of groundbreaking, but researchers from Rice University have raised their own doubts about this seemingly miraculous technology, and whether or not it is as fool-proof as it’s presented to be. In response to this question, they have begun to lead an effort with a goal “to reveal potential threats to the efficacy and safety of therapies based on CRISPR-Cas9…even when it seems to be working as planned.” 

CRISPR-Cas9 was designed to treat sickle-cell anemia. In order to combat this disease, the technology works to edit large sequences in a patient’s DNA, therefore aiming to change their DNA and erase the aspect of it that makes them suffer from the illness. However, researchers have begun to fear that taking such a large step as this (erasing large portions of one’s DNA) is presumptuous, and could possibly yield dangerous, long-term effects, since this genetic modification CRISPR allows will only further spread throughout the patient’s body through stem cell division/differentiation. 

These fears mainly stem from the fact that scientists are not sure how DNA strands are able to rejoin after so many of their sequences have been cut out, and therefore, separated. However, bioengineer Gang Bao of Rice University has other concerns, as well: “large deletions (LDs) can reach to nearby genes and disrupt the expression of both the target gene and nearby genes.’”

Gene expression is a very complex process that occurs in the cells of all organisms, but which can be broken down into two major steps: transcription—”synthesis of RNA using information from DNA”—and translation—”synthesis of a polypeptide or protein using information in the mRNA.”  This process running smoothly is extremely important, as the ‘information from the DNA,’ or amino acid bases, need to be copied exactly without any mistakes, duplicates of bases, etc.. 

Bao also expresses another concern about CRISPR-Cas9: “‘you could also have proteins that misfold, or or proteins with an extra domain because of large insertions. All kinds of things could happen, and the cells could die or have abnormal functions.’”

With so many hypotheses at play, Bao and his research team knew they had to somehow figure out answers: they developed a technique called SMRT—’single molecule, real time’—that utilizes molecular identifiers to seek out and find accidental LDs, long insertions, and chromosomal rearrangements that are located at a Cas9 cutting site. To do this, a machine was used called the ‘LongAmp-seq’ (long-amplicon sequencing) to emphasize the presence of particular DNA molecules. This allows for the quantification of LDs and large insertions on a DNA strand. 

Researchers used streptococcus pyogenes as a medium. With this bacteria, they edited enhancers such as beta-globin (HBB), gamma-globin (HBG), and B-cell lymphoma/leukemia 11A (BCL11A), and genes such as PD-1 gene in T-cells of sickle-cell anemia patients. 

In testing these, they found incredible results: across the 3 enhancers and 1 T-cell gene, the average frequency of several thousand large DNA deletions averaged a whopping 20.025%. 

While it is unclear at this time whether Bao’s team’s discoveries will unveil consequences of genes modification by CRISPR technology, they state that they will work to “determine the biological consequences of gene modifications due to Cas9-induced double-strand breaks,” and look forward to testing if “‘these large deletions and insertions persist after the gene-edited HSPCs are [transplanted] into mice and patients.’

Biological Warfare: Bacterial Edition

Ubiquitin cartoon-2-

In February 2023, a study was published announcing that bacteria possess something similar to humans that can activate and deactivate immune pathways, and therefore this “something” could be used to cure diseases; that “something” is called the ubiquitin transferase enzyme

Biological warfare, the use of infectious agents to kill diseases caused by other infectious agents, has been considered as a potential solution in the past. In fact, years prior, a family of DNA sequences now referred to as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) were discovered in bacteria, and it was determined that these sequences were capable of killing other phages and being used to cure infections. 

Our immune pathways, as we learned in our immunity unit in AP Biology, is crucial for our survival as a species. Our immune system consists of innate immunity, involving natural killer cells that serve as our first line of defense against pathogens, and adaptive immunity, involving B cells and T cells that need to be trained to fight these pathogens. Our immune pathways alone, however, cannot rid us of neurodegenerative diseases, and these diseases still unfortunately have no cure.

One may be wondering now, how can the ubiquitin transferase enzyme work to treat diseases like Parkinson’s? How does it help our immune pathways? Well, the answer to that is protein editing. The enzyme contains two proteins, CD-NTase-associated protein 2 and 3 (also known as Cap2 and Cap3); these proteins are what serve as the activation and deactivation for immune pathways: they can direct old, unnecessary, or damaged proteins to be broken down. 

When the potential of CRISPR was discovered, scientists used genome editing to direct the machine so it would kill its targeted diseases. A similar attempt could be made with the ubiquitin transferase enzyme. 

Finding the existence of this in bacteria especially is an amazing discovery, as not only does it propel us in the right direction in terms of potentially curing Parkinson’s or other neurodegenerative disorders, but it connects back to our other lesson in AP Biology that humans and bacteria are not so different after all. We share about a thousand genes!

It is particularly interesting knowing how biological warfare could be used to help us.

How Baby Kangaroos Are Helping Climate Change

In the world, there are over 1 billion cows and calves, roughly 4.3 times as many cows as people living in the United States. Cows are the number one source of greenhouse gases worldwide, with a single cow producing 220 pounds of methane gas a year. Methane (CH4) is a colorless, odorless, and highly flammable gas, composed of carbon and hydrogen. Being a potent greenhouse gas, it impacts climate change by increasing global warming according to the US Environmental Protection Agency. Methane affects our environment but it can also impact humans “high levels of methane can reduce the amount of oxygen breathed from the air. This can result in mood changes, slurred speech, vision problems, memory loss, nausea, vomiting, facial flushing, and headache. In severe cases, there may be changes in breathing and heart rate, balance problems, numbness, and unconsciousness“. Although this is in extreme cases. Recently, scientists may have discovered a methane inhibitor that could reduce the amount of methane cows release. This source comes from an interesting source though: Baby kangaroo feces.

 

It's a cowspiracy ! - Wake up and smell the methane. (23335965671)

 

Researchers from Washington State University wanted to figure out a solution to lower methane gas production rates in cows seeing as people enjoy eating red meat and taking them entirely out of the equation is not a feasible answer. They performed a study using baby kangaroo fecal matter to develop a microbial culture that inhibited methane production in a cow’s stomach stimulator. This resulted in cows producing acetic acid – is also known as ethanoic acid, ethylic acid, vinegar acid, and methane carboxylic acid; it has the chemical formula of CH3COOH. Acetic acid is a byproduct of fermentation and gives vinegar its characteristic odor. Vinegar is about 4-6% acetic acid in water – in place of methane. Acetic acid is not just a waste product in a cow like methane but is actually beneficial for the cow as it helps muscle growth. Not only would lowering rates of methane production in cows be beneficial for the environment but also for the cow as the cow wastes around 10% of its energy in methane production. Researchers have tried chemical inhibitors but the methane-producing bacteria has become resistant each time. The actual experiment all began with the researcher’s study of fermentation and anaerobic processes, which lead to the creation of an artificial lumen designed to stimulate cow digestion. Then they began investigating how they could outcompete the methane-producing bacteria and learned that – specifically – baby kangaroos have acetic acid-producing bacteria instead of methane-producing bacteria. Researchers were “unable to separate out specific bacteria that might be producing the acetic acid, the researchers used a stable mixed culture developed from the feces of the baby kangaroo.” Eventually, the acetic acid bacteria was able to replace the methane-producing microbes for several months having similar growth rates. Researchers hope to eventually test their system outside of a stimulated rumen and on a real cow sometime in the future. This connects to our unit of enzymes and enzyme inhibitors. Enzymes allow the cell to perform tasks with less energy by binding to reactant molecules and holding them in a way that breaks the chemical bond allowing bond-forming processes to take place more easily. Enzyme inhibitors are molecules that bind to the active site – competitive inhibition – or the allosteric site – noncompetitive inhibition – making the enzyme unbindable, reducing the rate of enzyme-catalyzed reaction, or preventing it from happening altogether. This is what the researchers are trying to do in their study, inhibit the enzyme in the methane-producing bacteria and allow the acetic acid bacteria to grow instead. Overall, if this process proves to work in real cows it could be a huge advancement in the slowing down of climate change.

 

 

 

 

Bacteria May Not Be As Simple As We Once Thought

Bacteria biofilms are ubiquitous in our world, living in various conditions that allow bacteria to build up, such as sewer pipes or even our own teeth. New studies have shown that bacteria not only have intelligent systems for communication but also have the ability to remember things.

Biofilms are ancient, with evidence of biofilms dating back to 3.25 billion years ago. While they are able to grow on many different surfaces, these surfaces all share a commonality: they’re wet. Biofilms to humans are a cause 

of concern regarding our health since biofilms can grow on implanted medical devices, which can lead to infections. Bacterial biofilms can also cause infective endocarditis and pneumonia. Furthermore, bacteria that are within a biofilm are also more resistant to antibiotics and other disinfectants and are considered to be 1,500 times more resistant.

Grand Prismatic Spring

The Grand Prismatic Spring is probably the most popular biofilm, as the various bacteria biofilms give the spring its bright colors.

Biofilms have recently been recognized as an advanced community, with the discovery that biofilm cells are organized in intricate designs that plants and animals have been known to use. Süel, a UC San Diego Professor of Molecular Biology, states that this concept of cell patterning is much more ancient than they once thought. This new discovery opens the possibility that this segmentation of cells may go back to over a billion years, and was not just a new emergence from plants and animals.

As found through experiments and mathematical models, the study revealed that the biofilms involved used a “clock and wavefront mechanism,” which sophisticated organisms such as plants, flies, and humans use. A “wave” of nutrient depletion moves across cells, which dresses a molecular clock inside each cell that creates a pattern of distinct cell types as the biofilm expands and consumes nutrients. This breakthrough identified the circuit that the biofilm’s ability to generate community concentric rings of genetic patterns.

As seen in AP Biology, the formation of a biofilm is an example of Cell Communication. With unicellular organisms, they are able to communicate with each other to signal for the availability of food, identify mating types, or detect others for coordinated behavior. For bacteria, they utilize Quorum Sensing, in which they secrete small molecules that are detected by other bacteria. If they sense the population is close enough to perform group behavior, they will begin to do so.

This new discovery opens many doors to various research fields, due to the fact that biofilms are prevalent in our everyday lives. From medicine to the food industry to the military, these biofilm systems can be used to test and investigate the in-depth aspects of the clock and wavefront mechanism. Plants and vertebrate systems are harder to study, but bacteria aren’t because they “offer more experimentally accessible systems that could provide new insights for the field of development,” Süel states. 

Personally, I am very interested in how these studies are going to be used, specifically in a “military” field. Furthermore, do you think there is more groundbreaking information regarding bacteria that can help us put the pieces together for life before humans? Let me know in the comments below and thank you for your time!

 

Researchers Discover an Ancient Metabolic Process Ruled by the Concentration of Carbon Dioxide

Summary of the Krebs Cycle:

In AP Biology, we are currently learning about how the Krebs cycle (also known as the citric acid cycle) is one of the most important metabolic pathways for sustaining eukaryotic life and generating ATP. 

In the matrix of the mitochondria, the citric acid cycle begins by the acetyl group from acetyl CoA attaching to an oxaloacetate molecule to form a citrate molecule. Citrate is then oxidized and in the process, releases two carbon dioxide molecules for each acetyl group used in the cycle. Three NAD+ molecules are converted to NADH, one FAD molecule is converted to FADH2, and a single ATP molecule is created. This pathway should occur a second time, as the oxidation of every two pyruvates creates two acetyl CoA, which begins the Krebs cycle.

The citric acid cycle also functions similarly in bacteria and eukaryotic systems, generally speaking. 

Citric Acid Cycle Diagram

There’s a “Reverse” to the Krebs Cycle Now?

In the absence of oxygen, some bacteria can perform the “reverse” of the Krebs cycle. This process results in the construction of biomass within bacteria that perform this process.

A key distinction between the citric acid cycle and the “reversed’ citric acid cycle, is that citrate synthase normally found in the Krebs cycle is replaced by ATP-citrate lyase in the “reversed” process. This is crucial because ATP-citrate lyase consumes ATP to split citrate instead of forming it. Another variation of this process requires no energy and has stumped researchers as to why organisms often utilize the energy costing pathway instead of the “easier” pathway to acquire biomass.

Researchers at the University of Münster decided to investigate potential factors that trigger this “easier” pathway in two kinds of anaerobic bacteria: Hippea maritima and Desulfurella acetivorans. These organisms thrive in oxygenless hot springs, with a carbon dioxide concentration of over 90 percent in their environment.

The team later found that the bacteria’s unique habitat proved to be an important factor responsible for the growth of the organisms’ biomass. After cultivating the bacteria under a diverse range of conditions, the research team discovered that the high concentration of carbon dioxide is responsible for enabling the “reversed” citric acid cycle in both anaerobic bacteria.

“It was mysterious why this ‘expensive’ version of the pathway exists if an energetically much cheaper alternative through the backwards reaction of citrate synthase is feasible. Now we know that this is due to the low carbon dioxide concentrations in many environments. The cheap alternative doesn’t work there.” researcher Wolfgang Eisenreich says.

What the Emphasis on the Concentration of Carbon Dioxide Means for this Pathway:

Carbon dioxide’s crucial role in this metabolic pathway suggests that it could stem from life on primordial earth. This is based on their theory that this “reversed” pathway was a widespread mechanism in organisms due to the surplus of carbon dioxide in the air during the primordial life timeline and the pathway’s unique dependence on high levels of carbon dioxide. Another supporting aspect to their theory is that 2.7 billion years ago, an estimated 25 to 50 percent of Earth’s atmosphere was comprised of carbon dioxide in contrast to today’s levels of carbon dioxide, which is about 0.04 percent.

The researchers have realized that the ATP-expending pathway exists due to the significant decrease of carbon dioxide in the air because the alternative pathway that doesn’t require energy isn’t possible without the surplus of carbon dioxide in the atmosphere. 

Questions:

Do you believe they have truly discovered an ancient metabolic pathway? Or do you think these bacteria adapted to function this way?

Would you think that this process would be highly conserved in evolution if the carbon dioxide levels in the atmosphere didn’t dip?

The Unknown Disinfecting Protein

When our body is invaded by a virus, it will send its army to fight it, this army is known as the Immune System. The Immune System uses white blood cells to do most of the pathogen killing work, sending white blood cells in waves. The Immune System records the pathogens signature features and creates antibodies to fight the particular invader. But in some cases, the Immune System’s antibodies “are less effective against pathogens that have already penetrated the interior of the cells.” When bacteria microbes get past the Immune System and get to the cytoplasm, the bacteria will replicate. This is where a protein comes and dissolves the bacteria in the cell.

A less known family of proteins called the Apolipoprotein can actually dissolve bacteria that is in the cytoplasm. Researchers at Howard Hughes Medical Institute at Yale discovered the APOL3 in particular had the ability of dissolving a bacteria. An experiment with un-immune cells, cells that are not protected by Immune System, and the bacteria, Salmonella. Salmonella has a double membrane, similar to mitochondria and chloroplasts, making it very hard for cells to kill it. The APOL3 protein, however, “binds to and destroys the inner membrane of virulent bacteria like salmonella and kills them.” APOL3 only removes the inner layer, with the help of an immune protein called GBP1, GBP1 can remove the outer layer and set up APOL3 for the final shot. The way APOL3 dissolves bacteria is by shooting or surrounding the bacteria with APOL3 molecules and it just goes away. This is probably why researchers called it the detergent. The way APOL3 does this scientifically is by possessing “parts attracted to water and parts drawn to fats.” Since membranes are mostly made of lipids, the bacteria is a sphere of lipids and inside are its organelles. The APOL3 binds to and destroys the lipid membrane, releasing all the cytoplasm organelles out and killing the bacteria. APOL3’s method of dissolving must dissolve some other parts of the cell right? Well, APOL3 actually has a selective target, targeting bacteria lipids and not attacking cholesterol.  As we learned in class, cholesterol is a lipid which is part of the plasma membrane as well as the building block of other steroids. Because APOL3 cannot target cholesterol, our human cells are safe.

Salmonella

“Salmonella” by National Institutes of Health (NIH) is licensed under CC BY-NC 2.0

 APOL3 is a very diverse protein and allows it to be around the whole body. Humans have a very strong defense system, having the Immune System as well as detergent like proteins around the body, lipid based bacteria will have a hard time in our cells.

 

The Common Misconception Around Antibiotics & New Findings

Gfp-medicine-container-and-medicine-tabletAntibiotics as a treatment are never fun – not only are you most likely dealing with a bacterial infection, but you need to take them on a strict cycle and can be quite aggressive on your stomach. I once had to go on antibiotics for treating a sinus infection, and it didn’t quite make me feel better after taking it. So after, I went on the same antibiotic, Cefuroxime, and took a higher dose, but I was not consistent in taking it and started feeling ill. This reaction was due to the antibiotics impact on the protective bacteria in my stomach’s microbiome. I soon learned more about the effects the antibiotics had on my stomach’s microbiome, and realized the common misconception around antibiotics – that they only benefit one’s health – and how some of the symbiotic relationships with bacteria in there are essential to digestion and immune protection. 

Biological overview

Antibiotics have been around since 1928 and help save millions of lives each year. Once antibiotics were introduced to treat infections that were to previously kill patients, the average human life expectancy jumped by eight years. Antibiotics are used to treat against a wide variety of bacterial infections, and are considered a wonder of modern medicine. However, they can harm the helpful bacteria that live in our gut.

The word antibiotic means “against life”, and they work just like that – antibiotics keep bacterial cells from copying themselves and reproducing. They are designed to target bacterial infections within (or on) the body. They do this through inhibiting the various essential processes we learned in Unit 1 about a bacterial cell: RNA/DNA synthesis, cell wall synthesis, and protein synthesis. Some antibiotics are highly specialized to be effective against certain bacteria, while others, known as broad-spectrum antibiotics, can attack a wide range of bacteria, including ones that are beneficial to us. Conversely, narrow spectrum antibiotics only impact specific microbes.

Antibiotic resistance mechanisms

The Human stomach is home to a diverse and intricate community of different microbial species- these include many viruses, bacteria, and even fungi. They are collectively referred to as the gut microbiome, and they affect our body from birth and throughout life by controlling the digestion of food, immune system, central nervous system, and other bodily processes. There are trillions of bacterial cells made of up about 1,000 different species of bacteria, each playing a different role in our bodies. It would be very difficult to live without this microbiome – they break down fiber to help produce short-chain fatty acids, which are good for gut health – they also help in controlling how our bodies respond to infection. Many antibiotics are known to inhibit the growth of a wide range of pathogenic bacteria. So, when the gut microbiome is interfered with using similar antibiotics, there is a high chance that the healthy and supportive microbes in our stomachs are targeted as well. Common side effects of collateral damage caused by antibiotics can be gastrointestinal problems or long-term health problems (such as metabolic, allergic, or immunological diseases). There is a lot of new research on the gut microbiome, some even suggesting that it impacts brain health by influencing the central nervous system. It is essential that we know more about how we can optimize its overall well-being.

New Research

Tackling the Collateral Damage to Our Health From Antibiotics

Researchers from the Maier lab EMBL Heidelberg at the University of Tübingen have substantially improved our understanding of antibiotics’ effects on gut microbiomes. They have analyzed the effects of 144 antibiotics on our most common gut microbes. The researchers determined how a given antibiotic would affect 27 different bacterial strains; they performed studies on more than 800 antibiotics.

The studies revealed that tetracyclines and macrolides – two commonly used antibiotic families – led to bacterial cell death, rather than just inhibiting reproduction. These antibiotic classes were considered to have bactericidal effects – meaning that it kills bacteria rather than just inhibiting their reproduction. The assumption that most antibiotics had only bacteriostatic effects was proven not to be true; about half of the gut microbes were killed upon being treated with several antibiotics, whereas the rest were just inhibited in their reproduction. 

These results expanded existing datasets on antibiotic spectra in gut bacterial species by 75%. When certain bacteria in the gut are dead, and others are not, there can exist an reduction of microflora diversity in the microbiota composition; this concept is referred to as dysbiosis. This can result in diarrhea, or even long term consequences such as food allergies or asthma. Luckily, the Researchers at EMBL Heidelberg have suggested a new approach to mitigating the adverse effects of antibiotics on the gut microbiome. They found that it would be possible to add a particular non-antibiotic drug to mask the negative effects the antibiotics had. The Researchers used a combination of antibiotic and non-antibiotic drug on a mouse and found that it mitigated the loss of particular gut microflora in the mouse gut. When in combination with several non-antibiotic drugs, the gut microbes could be saved. Additionally, they found that the combination used to rescue the microbes did not compromise the efficacy of the antibiotic.

It has been known for a while that antibiotics were impactful on gut microbiome, but its true extent had not been studied much until recently.  More time is needed to identify the optimal dosing and combinations, but the research coming from the Maier lab is very substantial as it fills in “major gaps in our understanding of which type of antibiotic affects which types of bacteria, and in what way,” said Nassos Typas, Senior Scientist at EMBL Heidelberg.

This Parasite Can Change Agriculture for the Better

When parasites take control of a host, it may seem like all is lost for the unfortunate animal. However, a newly discovered parasite uses a mechanism that actually slows down plant aging, and may offer new ways to protect crops that were once threatened by diseases. 

Prior to this discovery, very little was known on how this parasite functioned on both a molecular and mechanistic basis. The Hogenhout group at the John Innes Centre and collaborators published in Cell have identified a manipulation molecule produced by Phytoplasma bacteria, which hijacks the development of plants. This protein breaks down key growth regulators, which as a result causes abnormal growth.

According to an article published by FronteirsIn, phytoplasmas and their associated diseases cause severe yield loss globally. For example, Aster Yellows cause major yield losses in crops such as lettuce, carrots, and cereals. As stated in the article, “Phytoplasma diseases of vegetable crops are characterized by symptoms such as little leaves, phydolly, flower virescence, big buds, and witches’ brooms.” These effects ultimately cause the host plants to die over time. 

Phytoplasma Growing on a Plant

Professor Saskia Hogenhuot said that “Our findings cast new light on a molecular mechanism behind this extended phenotype in a way that could help solve a major problem for food production.” One of these findings includes the bacteria protein entitled SAP05, which manipulates the plant’s molecular structure. This manipulation targets the process of the proteasome, which breaks down obsolete proteins inside plant cells. SAP05 causes the plant proteins that are used for regulating growth and development to be thrown out. With the absence of the proteins, the plant’s development favors the bacteria, which in turn triggers vegetative growth and pauses the plant’s aging process.

Specifically, SAP05 directly binds to the plant developmental proteins and the proteasome. Proteasomes hold a very important role in the cell regarding the degradation of proteins, with Professor Gonzalez writing, “proteasomes perform crucial roles in many cellular pathways by degrading proteins to enforce quality control and regulate many cellular processes such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein-quality control, and development.” Conversely, SAP05’s direct binding is a newly discovered method of degrading proteins, unlike the usual fashion of proteins degraded by proteasomes that are tagged with ubiquitin beforehand. 

To further study SAP05, the research team wanted to see if SAP05 affects the insects that carry the bacteria plant to plant. Turns out, SAP05 does not affect the insects due to the structure of the host proteins in animals differing enough from plants. This research also enabled the team to identify the two amino acids in the proteasome that interact with SAP05. If these two amino acids in the plant proteins were switched to the amino acids found in the insect protein, they would prevent abnormal growth. 

In a polypeptide chain, every amino acid is important to how the chain functions. Specifically, an amino acid’s unique side-chain gives it different characteristics, which plays a role in how the protein is structured and its function in the cell. In this case, these two amino acids from plant to insect proteins ultimately change the way SAP05 interacts with the polypeptide chain, which as a result changes the effect. 

Personally, I feel that this discovery is groundbreaking since it enables countless possibilities regarding the prevention of mass yield loss. How do you think this research will be utilized in the future? Let me know in the comments!

A Sweet Post About Sourdough!

When Covid-19 hit the US, some of the biggest quarantine coping mechanisms all revolved around a fan favorite carbohydrate: bread. With the copious amount of time on people’s hands, baking sourdough bread was the perfect activity.

Unlike any other bread, it’s hard to get the perfect tasting sourdough. Research has found that there are biological reasons behind sourdough bread and its taste, but before doing so, it’s important to learn what sourdough bread is made up of, and how it’s made. To help learn more about the process of making sourdough bread from scratch, I got a mini crash course from Little Spoon Farm. The starter (initial mixture) contains flour and water and sometimes salt, which will eventually grow into a diverse selection of microbes (these are tiny living organisms, which in this case are bacteria). The starter has to sit for 7-14 days, and within that time, the starter grows through the flour by eating the sugars within itself. With that growth comes bacteria/microbes and lactic acid, which eventually will allow the bread to be able to leaven in the oven.

Recent studies have shown that each starter is made up of different microbes. One study had 18 professional bakers from all around the globe make their sourdough, and send it to a lab in Belgium, where DNA sequencing was used to identify the microbes in the different starters. Although there were common yeasts and acids found like Saccharomyces cerevisiae and Lactobacillus, the strands and amount of each differed according to the starter. Another study done by Elizabeth Landis, at Tufts University, looked at 560 different starters submitted from all around the world. Through doing so, she found recurring microbe groups within these different sequences. There is still no definitive reason behind the microbe groupings, and why exactly they differ for each starter, but Landis mentioned that certain yeasts “specialize in feeding on distinct sugars,” due to the fact that they are made of different sugar mixtures. Some yeast also lack certain enzymes, which as we learned in class, help break down molecules. In this specific situation, the enzymes within different yeasts feed on and break down sugars. Differing yeasts could also be a reason why sourdough bread has different flavors. (Keep in mind that Landis’ findings are still under review, so there are still limited details on this experiment and not definitive reasoning).

Microbial ecologist, Erin McKenny, further elaborates on how “each microbial community can produce its own unique flavor profile.” For example, when more acetic acid is present in the starter, the bread will have a more sharp and vinegary taste. When the starter produces more lactic acid, it has a more sour and yogurt like taste. Metabolic byproducts within the starter could also potentially add to the complexity of the sourdoughs’ taste. In addition to each microbial community, scientists have identified other features that influence the taste of the bread like temperature. When lactic acid ferments in a warmer area, the bread has a more sour taste, and when it ferments in a colder area, the bread has a more fruity taste.

After looking at multiple articles showing how bakers get their sourdough to have a certain taste, I have learned how important the specifics are when it comes down to making sourdough. One article that gave tips on how to manipulate the taste of sourdough reinforces everything that the main article helped explain, and talks about the importance of keeping a warmer, dry climate to ensure that the bread tastes sour. It turns out that a quarantine treat may be a bit more complex than it appears. It’s interesting to see how biology plays a key role in one of the most prominent foods, and next time you consider making sourdough or get a bread basket from the Cheesecake Factory, you’ll now know the biology behind it.

Did ants originate from zombies? This fungus will give you the answers.

There is a certain fungus that turns ants into zombies, but afterward, they explode. When ants are just walking by minding their own business they step on fungal spores. It attaches to the ant’s body and the fungal cell goes inside of the ant. The fungus feeds from within and increasingly multiples cells and it is called, Ophiocordyceps,   mainly living in the tropics. The danger about this fungus is that the ant is unaware of this whole process, it goes about its daily life, searching for food and bringing back to its nest. However, the fungus takes up half of an ant’s body mass. It undergoes a parasitic relationship where the fungus benefits, while the ant is harmed.

Once the fungus is done feeding, the ant will feel a needle-like sensation. What is happening here is that the fungus is pushing on the ant’s muscle cells. And the cell signals also get sent to the ant’s brain, then the ant will climb upwards above its nest. Ophiocordyceps does something very weird where it allows the ants to move upwards to a leaf above ground and then the ant bites down, where it locks its jaw. Then it sends out “sticky threads that glue the corpse to the leaf.” The ant’s head then bursts open, called a “fruiting body”, where it looks like horns projecting from the ant’s heads and the horns disperse more of these fungal spores onto its nest below it leaving behind a trail of spores. 

Hornlike antlers that come out of the ant’s head

There is still so much that is unknown about Ophiocordyceps because scientists don’t even know what kind of chemical gets into the ant’s brain causing it to climb. There are ants that age back to 48 million years old gripped onto leaves.  Scientists thought there was one species that zombified ants but it turns out there are at least 28 different fungal species that attack other insects as well. Dr. Araújo drew out a family tree to see what was infected by Ophiocordyceps. It became known that all Ophiocordyceps species come from a common ancestor, first infecting beetles larvae, not hemipteran.

The beetles that are affected by the larvae live in eroding logs.

“They’re mostly solitary creatures, with a very different life history,” compared to ants, she said.

It can now be inferred that possibly millions of years ago when this was happening to beetles, ants picked up the fungus if they were living in the same logs. Thus a constant cycle and more spreading of fungal spores. Even though natural selection favored keeping the ant’s host healthy and away from parasites, Ophiocordyceps had to find a way to make the ant leave the nest, not far enough from its environment, but just in the right place to send out the spore to infect whatever other ants were living around it. 

Because this behavior is so unordinary it is not possible that only one gene is responsible for all of this. They keep finding new species. Dr. Hughes and Dr. Araújo are still researching to find that there are hundreds of other species of Ophiocordyceps that are yet to be discovered.

Exposure to Certain Bacteria Can Lead to the Development of Celiac Disease

In a study published by the Nature Structural and Molecular Biology, researchers have found that bacterial exposure is a potential environmental risk factor, leading to the development of Celiac Disease. Scientists believe that this discovery can lead to diagnostic or therapeutic approaches to the illness.  

Celiac Disease affects about one in 40 Australians and about half are born with about one of two genes that cause the disease. People suffering from Celiac Disease must follow a strict non-gluten diet, as any amount of gluten can trigger health problems. Scientists have known for a while that environmental factors trigger Celiac Disease, alongside the genetic predispositions, but were unaware of exactly what the environmental causes was.

To conduct the study, researchers showed how, at a molecular level, receptors that were isolated from immune T from Celiac Disease recognized pieces of protein from certain bacteria that mimic gluten. The results showed that exposure to such bacteria may play a role in the recognition of gluten by the same T cells when individuals with a predisposition eat any amount of gluten. Thus, the individual’s immune system reacts to the bacteria molecules and, in doing so, develops a reaction to gluten molecules because to the immune system the molecules are identical. 

With these results researchers have now linked microbial exposure as a possible environmental risk factor for Celiac Disease through a molecular foundation. 

The results of this study is extremely important as it can lead to new search in Celiac Disease and possibly new methods of prevention!

Human Microbiome and Age: A Complex Balancing Act

 

Dozens of studies in the past few years have been dedicated into research on the bacterial microbiome that lives inside of every human being. The cultivation of the microorganisms that live symbiotically inside of us begins as soon as a baby comes out of the womb and is exposed to the world outside of its mother’s uterus. These bacteria are imperative to many, many bodily functions throughout our lives. The link between us and our microbiome is so crucial that a faulty microbiome can easily cause death. An example of how these bacteria are so important is the fact that many molecules we use daily are mainly created by symbiotic bacteria such as Vitamin B and Vitamin K, 75% of which is supplied symbiotically.

 

The Link Between our Gut and Age

There is a lot of research left for scientists to discover the effects of our microbiomes but one of the most hotly studied aspects of the bacteria that inhabit our gut is their relationship to our age. There is much research showing how our specific colony of bacteria changes over time. One study by Alex Zhavoronkov shows that the specific type of bacteria present at various stages of development stays consist across different people. So consistent in fact that he was able to have a computer teach itself how to predict the age of a subject within 4 years of accuracy based on their microbiome. He noted that of the 95 bacteria he studied, 39 were crucial in determining the age of a subject. This research seems to suggest that the bacteria in our stomach could serve as an accurate biological clock which could be used to analyze the effects of various things such as alcohol consumption, diet and disease have on a persons longevity. The main issue with his study though is that his subjects all represent a sliver of the human population and due to bacteria’s great biodiversity, predicting ages across the globe could be impossible. Yet in any case, the link between our microbiome and our age is certainly a huge possibility.

Can Bacteria Reverse Aging?

No. Bacteria cannot reverse the aging process unfortunately. We simply do not have   enough research and understanding of the link between age and the microbiome inside the human body enough to make such a grand statement. However, one study seems to suggest a chance in this strange idea. In this unorthodox study, the microbiome of young Turquoise Kill Fish was added to the microbiomes of older fish of the same species. The results are surprising. The older fish ended up living lives 37% longer than their unaffected counterparts. The reasons are unclear yet the evidence is stark. Could this mean we could put young bacteria into humans and continue to stretch our lifespans to be longer than 100 years? Again, we do not know but only the future will tell what will happen.

Are Antibiotics Truly Good?

Antibiotics are also known as antibacterials. They can destroy or slow down the growth of bacteria in the body. They’re used to fight against certain infections that attack the immune system. Although the use of antibiotics can save a person’s life, the use of them can have repercussions. Most gut bacteria can recover quickly from the use of antibiotics, however there can be long-lasting effects. The changes it makes isn’t necessarily harmful, but that isn’t always the case. 

 

The gut microbiome, has roughly 10 trillion to 100 trillion bacteria and other microorganisms that live in the digestive tract, contributes to health by synthesizing vitamins, metabolizing drugs and fighting pathogens. Anything that disrupts the balance of microorganisms, such as antibiotics, which can kill both “good” and “bad” bacteria, has the potential to cause disease.” 

Research done in a 2016 study shows that being exposed to antibiotics as an infant can alter the gut microbiome in a baby and “weaken the immune response for years to come.” The duration of breastfeeding reduces the frequency of infections, and the risk of being overweight. Conclusions of the study conveyed antibiotic use in a child during the breastfeeding period could weaken the beneficial effects of long term breastfeeding. In addition, the results suggest that intestinal microbiota is affected by the long term metabolic benefits breastfeeding has. 

Antibiotics are the most common type of medicine prescribed to young children in the Western world. As mentioned previously, antibiotics can dramatically alter the gut microbial composition. Research shows, “…the gut microbiota plays crucial roles in immunity, metabolism and endocrinology, the effects of antibiotics on the microbiota may lead to further health complications.” Exposure to environmental microorganisms and parasites is important for healthy development and maintenance of the immune system. In Western countries contact with microorganisms has significantly decreased over the recent decades. “ As antibiotics are a factor that reduces exposure to microorganisms and disrupts the body’s natural microbiota, this… may help explain the observed effects of antibiotics on the immune system.”

“Since infancy is a crucial time for microbial establishment, it is necessary to evaluate the influence of antibiotics given quite liberally during this period. Antibiotic treatment given to both infants and toddlers has already been shown to strongly affect microbiome composition. In an attempt to understand the effects of antibiotics on the microbiome, both human reports and experiments in animal models have been employed”.

Although, antibiotics are a powerful source of medication that can fight off infections and save lives when used properly, it is essential to not overuse or become too reliant on them. Overuse contributes to the resistance to fighting bacterial infections, and hurts the body’s natural microbiota.

 

CAP v.s. HAP: Pneumonia in the Microbiome

While many may not know this, there are various types of pneumonia.  The most common variant, CAP (community-acquired pneumonia), is the most prevalent strain of the infectious disease.  As the name may suggest, CAP is acquired through daily interactions (whether that may be contact or inhalation of pathogens which could later travel to the lungs) with any surface that has bacteria such as Streptococcus pneumoniae and Haemophilus influenzae.

While pneumonia is a well-known infectious disease among the population in 2019 due to the plethora of literature and research done on it, most people do not know that other variants of pneumonia are contracted in different ways, through different strands of bacteria.  HAP (hospital-acquired pneumonia or healthcare-associated pneumonia) can be contracted from extended periods of time in a hospital, nursing home, or rehabilitation center.  This pneumonia variant is a result of the P. aeruginosa and Staphylococcus aureus bacteria, which are completely different from the bacteria that cause CAP.

The demographics of people who suffer from each of these variants appear to be mostly similar with the only difference being that CAP has a stronger association with COPD whereas HAP still has an association with COPD, but in a smaller portion of the demographic.  Similarities between the two are the increased risk if one uses tobacco products or suffers from COPD, however, aside from these shared risk factors, the two variants are different in treatment methods (effectiveness of certain antibiotics) and contraction.

Relative to the microbiome, the major differences in the diseases can be found when testing biomarkers.  According to Ann Transl and Thomas Tschernig of the “Annals of Translational Medicine”, “lower levels in HAP as compared to CAP were found for MMP-8 and soluble E-selection, higher levels in HAP as compared to CAP were found for protein C”.

The significance of this discovery lies in the fact that the different variants of pneumonia could not be prevented, diagnosed, or treated in the same ways, thus exemplifying the dangers that would arise if the different variants were not classified and identified.

Additional resources.

 

 

Discovering and Using Your Personal, Biological, Tiny Army

Bacteria is an important part of our biology, so important that we are essentially 99% bacteria. A lot of this bacteria is part of the human gut microbiome. This topic has been picking up interest in the field of biology, and have shown linkage to many diseases such as inflammatory bowel disease and obesity. Not only do the bacteria in our gut play a role in preventing these diseases, but their symbiotic relationship helps us maintain metabolic functions.

File:The first and second phases of the NIH Human Microbiome Project.png

This is a depiction of the numerous types of bacteria in our microbiome.

Until recently we were unable to study these bacteria due to our inability to cultivate them in a lab; however, due to new advancements in sequencing technology we can now see how big of  role they play in our biology and our functions. These bacteria are “estimated to harbor 50- to 100-fold more genes, compared to the hose. These extra genes have added various type of enzymatic proteins which were non-encoded by the host, and play a critical role in facilitating host metabolism.” For example, gut microbiata is very important in fermenting unabsorbed starches. These bacteria also aid in the production of ATP. A certain type of bacteria generates about 70% of ATP for the colon with a substance called butyrate as the fuel.

File:Immune Response to Exotoxins.png

This image shows the interaction between the gut and the immune system. The immune system targets bacteria, but somehow not our gut bacteria. 

Another large role of the gut microbiome is its interactions with out immune system and nervous system. The bacteria in our gut suppress the inflammatory response in order to not be targeted by the immune system. This allows for a symbiotic relationship between us and the bacteria inside of us. This allows the gut bacteria to help regulate the inflammatory response without being stopped by the very thing it’s regulating. Without these bacteria our inflammatory responses would be completely out of the ordinary.

These findings with gut bacteria are fairly new and there is much more to come regarding their use in the field of medicine. Something to think about that I found fun was how little of us is really human. Ninety nine percent of you is bacteria, which essentially means that we are pretty much just giant colonies of bacteria. Kind of gross/amazing when you think about it.

Running on Bacteria

In a recent article it was found that elite athletes could have a step above average people due to some of the bacteria found in their gut. Researchers took stool samples what from elite runners from the Boston marathon in 2015 and found that there was a spike in appearance of the Veillonella. An in depth definition of what Veillonella is can be found here. For the purposes of the research it was said that these bacteria appears to take lactate produced by the muscles in the body and turns it into a compound that helps out the endurance of a runner. This same trend of increase of Veillonella was also found in 87 ultramarathon runners and Olympic rowers after a workout.

To prove their findings they cultivated one strand of Veillonella called Veillonella atypical from the runners and fed it to mice. They also gave the mice lactate in order to give the Veillonella food to feed on in the mice’s gut. The results to this was a 13 percent increase to the length of time these mice could run. However at the same time not all of the 32 mice that they gave this strand of Veillonella actually reacted to it. With the mice the Veillonella used the carbon from the lactate to grow and ended up producing propionate. An in depth definition of propionate can be found here. Propionate ended up raising the heart rate and oxygen use in the mice. For humans propionate also raises metabolism.

 

The overall take from these experiments give an interesting take on how these elite runners can do what they do. The food that someone eats isn’t the only thing that affects the microbiome in a humans gut. These bacteria could appear in the gut after only one session of working out or it could be something only certain people have and others don’t. It could also just be something that people who don’t focus heavily on running experience but it isn’t quite known yet. These things could also appear to The overall fact that bacteria in the stomach could be a big part of someone being athletically gifted is new and interesting to the scene of science. I find this cool as I’m a runner and a basketball player myself so to see that the bacteria in my stomach is what helps me do everything I do is incredibly interesting. Next time you run a mile or finish a game of your preferred sport thank your gut. The bacteria in there could just be the reason your body can do it at all.

 

Yes, Some of Us Have Different Human Ecosystems.

Our human ecosystems inside of us are composed of countless quantities of cells. However, only 10% of those cells are human cells.  Jeroen Raes , a Biologist based in Belgium, made a vital and fascinating discovery about the other 90%. He discovered that there are three different possible ecosystems inside individual humans. Each person has one of these three ecosystems: bacteriode, prevotella or ruminococcus. These ecosystems are composed of hundreds of trillions of harmless bacteria. One could explain our relationship with these bacteria as symbiotic, as we give them a share of food and they return the favor by helping us digest food and convert it to energy. Furthermore, these bacteria help us fight disease, and can even make us happier by triggering our neurons to release more serotonin. Raes’ experiment tested people from the US, Japan, and Denmark. Despite each regions unique diets, Raes claims to have found no correlation between diets and their individual ecosystems. Furthermore, Raes found no correlation between their age/genetic makeup and individual ecosystems.

People who have the bacteriode system “have a bias” toward bacteria that get most of their energy from proteins and carbohydrates. Bacteriode ecosystems also have more bacteria that make greater quantities of vitamins C, B2, B5, and H. On the contrary, both prevotella and ruminococcus ecosystems mostly digest proteins that are sugar coated. Both of these ecosystems also have more bacteria that create vitamin B1 and folic acid.

Raes’ findings have yielded very confusing results. Even Raes has conceded that he is unsure as to why only three total human ecosystems exist. Moreover, Raes admits his sample size of only a few hundred people will increase with more time and funding. Raes hopes to further his research on these unique human ecosystems, and potentially find links to obesity, diabetes, Crohn’s disease, and autism.

 

Page 1 of 4

Powered by WordPress & Theme by Anders Norén

Skip to toolbar