For over 50 years, it has been believed all factors that control gene activation in humans were identified and known to scientists. However, researchers from the University of California San Diego and Rutger’s have proved this theory wrong. 

Collegiate professors, and now pivotal contributors to modern science Dr. Jia Fei and James Kadonaga, have discovered a new protein that is involved in the regulation of RNA polymerase. Called NDF (nucleosome destabilizing factor), this gene-building molecule not only unravels nucleosomes, but also “turbocharges” RNA polymerase as it works its way along the DNA strand, improving the synthesis of replicating RNA.

But that’s not all this protein has to offer: NDF has also been found to be in an array of species and organisms, ranging from yeast particles to mammals. This widespread presence suggests that NDF is an ancient factor in the process of gene activation, and has been here since the very beginning. 

NDF works by first interacting with nucleosomes in cells, and then goes on to facilitate transcription– in other words, to replicate strands of RNA. Enzymes called RNA polymerases then come into play, and copy the RNA via dehydration synthesis. This process includes removing oxygen molecules and hydroxides from each nucleotide to covalently bind them together, producing a waste product of water molecules and, finally, a copy of the RNA strand. 

While this newly discovered protein is crucial for the elongation of RNA strands in many organisms, it is especially abundant in humans. Kadanoga reports that it is “present in all [our] tissues,” particularly in stem and breast cells. This makes sense, as NDF has actually been linked to breast cancer; Abnormally high levels of this protein lead to hyperactivity in gene synthesization, which increases the chance of a mutation occurring, and thus cancer. 

With all the remarkable characteristics of NDF, it is crucial that scientists today continue to explore the capabilities and effects of this gene-activating protein, and use it as a basis for studying diseases and phenomenons that occur in the process of gene replication.

RNA recognition motif in TDP-43 (4BS2)

Depiction of RNA strand.

Print Friendly, PDF & Email