BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: coral

Effect of ocean acidification: Coral growth rate on Great Barrier Reef plummets in 30-year comparison

GreatBarrierReef-EO

A new marine biological study conducted in Australia shows a correlation between rising ocean acidification levels and declining coral growth rates in the Great Barrier Reef. Scientists Ken Caldeira and Jacob Silverman carried out research testing growth rates from samples of current coral on the reef and records from the 1970’s. The findings were astounding. According to the comparison, coral growth rates have declined by almost 40% since the 1970’s and the scientists believe they have an explanation.

Coral produce their exoskeleton by utilizing aragonite, a naturally occurring calcium carbonate (CaCO3). This process is called calcification. However, when acid levels in the water become too high, the environment for producing healthy coral becomes compromised. Since the beginning of the Industrial Revolution about one third of all CO2 released into the atmosphere has made its way into the oceans. This lowers the Ph, causing the water to become more acidic, and creates an environment ill suited for coral growth. The scientists speculate that this acidification of the water is whats leading to decreased growth rates in not only coral, but also many other species of marine life.

Coral plays a vital role in underwater ecosystems, providing food sources and shelter for nearly 25 percent of all marine life. Some reefs admired and studied by scientists today began growing nearly 50 million years ago. There is no question that coral’s role is vital in the fabric of the ocean. However, recent studies similar to the research done by Caldeira and Silverman are prompting scientists to worry deeply about the future of our oceans. When quoted on the status of reefs today, Caldeira stated, “Coral reefs are getting hammered. Ocean acidification, global warming, coastal pollution, and overfishing are all damaging coral reefs. Coral reefs have been around for millions of years, but are likely to become a thing of the past unless we start running our economy as if the sea and sky matters to us very soon.”

Photo credit: Wikipedia Public Domain Images: http://en.wikipedia.org/wiki/Great_Barrier_Reef#mediaviewer/File:GreatBarrierReef-EO.JPG

Article:http://www.sciencedaily.com/releases/2014/09/140917121225.htm

Links for further reading:

http://www.pmel.noaa.gov/co2/story/Ocean+Acidification

http://ocean.nationalgeographic.com/ocean/critical-issues-ocean-acidification/

http://www.greatbarrierreef.org/

 

 

 

The Great Barrier Reef Not So Great?

 

Image By Paul Holloway, Flickr

The first adjective I use when thinking about the Great Barrier Reef is great. But, according to a new study published by the Australian Institute of Marine Science (AIMS) in Townsville, Australia, it is rapidly shrinking. The shrinking is due in part to the recent storms, an increase in the number of crown of thorns starfish in the reef and coral bleaching.

The Great Barrier Reef has lost half its coral in just over 27 years. John Gunn, the CEO of AIMS, said that we must “… adapt to the challenges of rising sea temperatures and ocean acidification.” He goes on to say, “We can’t stop the storms but, perhaps we can stop the starfish.”

Another concern for the Great Barrier Reef is that if this trend of shrinking continues at the rate it is going, then by 2022 the coral could shrink in half again.

But, there is some good news for the reef. It is able to regenerate itself. It will take about 10-20 years for the reef to fully recover, that is if it does not shrink in size anymore than it has already. This is quite near impossible though because there is no way to stop storms or ocean warming, which causes coral bleaching. The ocean warming stems from Global Warming, which is an epidemic in itself. The only thing that we can help to prevent is the crown of thorns starfish from destroying the reef. Scientists can continue to study them to find out how to reduce their numbers in the reef. Without the crown of thorns the reef with increase by 0.89% per year, a small recovery for the Great Barrier Reef. The whole process will take time, but if successful we can save the Great Barrier Reef from becoming a thing of the past.

 

Powered by WordPress & Theme by Anders Norén

Skip to toolbar