The Coronavirus has been a focal point for each individual in the past three years. Regardless of your age, gender, ethnicity, or even location, COVID-19 has been the one commonality for everyone. Because of COVID-19’s immense reach and detriment, scientists have worked tirelessly to source treatments and provide them to the people. Although the initial treatments worked in the beginning, as the virus grew and adapted, scientists, doctors, and Coronavirus professionals were forced to follow suit. To this day professionals are still trying to keep up with the ever-changing nature of the virus.

New research shows that initial Coronavirus treatments are slowly becoming more and more ineffective as the virus continues to mutate. The initial treatments for COVID-19 mainly consisted of monoclonal antibodies. Simply put, these are antibodies targeted to a specific illness, Coronavirus in this case. Because the antibody is targeted to one specific disease, as the disease mutates the antibody can no longer be applied to the newly altered disease. For example, recently the US Food and Drug Administration issued information regarding one Coronavirus antibody, Evusheld. They essentially stated that there is an increased risk of COVID-19 as certain variants cannot be neutralized or treated by Evusheld, the current monoclonal antibody. These new changes are critical for those with weakened immune systems who are reliant on strong antibodies to protect them.

To continue, scientists are exploring new ways and attempting to find new treatments for mutated viruses. They do this by seeking out vulnerable parts of the virus and creating an antibody for it. A former Harvard Medical School Professor, William Halestine, hopes that these new treatments will soon be in clinical trials for research.

One example of these clinical trials is currently being administered in Brazil and South Africa by Immune Biosolutions, a biotechnology company. Here they have created a new mix of antibodies and administered them to patients with both mild and high-severity cases of COVID-19. Two of the antibodies in the mix aim at a region of a spike protein where the virus would attach to the human cell. They want these antibodies to block this region and prevent the virus from attaching.

This process can connect to multiple concepts and ideas learned in our AP Biology Class. First, we learned about ligands and receptors, where each ligand is shaped specifically to its own receptor. In this scenario, the virus and antibody are both specific ligands for the spike protein and can only attach to specific spike proteins. This can be compared to our understanding of ligands docking with shape-specific receptors. Second, our understanding of antibodies can be paralleled with the company’s antibody mix. We learned that cells have a certain adaptive immunity to respond to new viruses. This can connect to the company creating new antibodies to adapt to the new virus. Furthermore, we learned that cells can have humoral or antibody-mediated responses, Immune Biosolutions antibody mix is exactly this, a humoral response.

I personally believe that there will be a point where the efforts of scientists and professionals surpass that of the virus. Where we can take control of the virus rather than working for it.  Hopefully, we as humans will eventually stop having to create newer and newer antibodies as the virus slows its mutations.

SARS-CoV-2 without background

 

Print Friendly, PDF & Email