BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: neuroscience

Deep Brain Stimulation Offers Promising Results for Traumatic Brain Injury Patients

Traumatic brain injuries can have profound and lasting effects on cognitive functions, impacting memory, attention, and mood regulation. Despite the prevalence of these challenges, there has been a lack of effective therapeutic interventions. However, a recent small-scale study conducted by Nicholas Schiff and his colleagues at Weill Cornell Medical College in New York City offers a glimmer of hope. The study explores the potential benefits of deep brain stimulation in treating cognitive impairment resulting from moderate to severe traumatic brain injuries.

The study focuses on the thalamus, a critical brain region acting as an early stop for sensory information. In the case of traumatic brain injuries, disconnections and cell death can occur, affecting the relay of information to the prefrontal and frontal cortexes responsible for executive function. By surgically implanting electrodes into the thalamus, the researchers sought to restore lost connections and improve cognitive function in individuals with traumatic brain injuries.

The groundbreaking success of deep brain stimulation in treating traumatic brain injuries resonates with the intricacies of cell communication, a topic in AP Biology. At the cellular level, effective communication is vital for maintaining homeostasis and responding to external stimuli. In the context of traumatic brain injuries, where neural connections are disrupted, the restoration of cognitive function through deep brain stimulation mirrors the intricate signaling pathways within cells. In both scenarios, the targeted transmission of signals plays a critical role in orchestrating responses and facilitating recovery. 

Deep brain stimulation involves the implantation of electrodes in the brain, powered by a pacemaker, to electrically stimulate targeted regions. This technique has a successful track record in treating conditions such as Parkinson’s disease, epilepsy, obsessive-compulsive disorder, eating disorders, and deep depression. Now, the focus has shifted to traumatic brain injuries, affecting over 5 million people in the United States alone.

Six patients, who had suffered traumatic brain injuries two to eighteen years prior, underwent surgery for electrode implantation. Targeting the central lateral nucleus of the thalamus, the researchers programmed the devices for a 12-hour on/off cycle and optimized them individually over a two-week period. The patients then underwent cognitive tests, such as the Trail Making Test.

The results were surprisingly positive, with five out of six patients showing improvement in attention and information processing. After receiving stimulation for at least three months, the patients demonstrated a significant reduction in the time it took to complete the Trail Making Test. This improvement suggests that deep brain stimulation may be a viable therapeutic option for addressing cognitive impairments caused by traumatic brain injuries.

In a separate publication, the researchers detailed the feedback from participants and their families. Patients reported improvements in everyday activities such as reading, playing video games, and watching television – tasks that had become challenging or impossible due to their injuries. Family members described the treatment as a “miracle,” with one mother expressing joy at having “got my daughter back.”

While the study has shown promising results, Nicholas Schiff plans to conduct larger trials involving more patients and for longer durations to gather more comprehensive data. The potential of deep brain stimulation in treating traumatic brain injuries raises important ethical considerations, as it not only benefits patients but also contributes to our understanding of fundamental questions about human brain function.

How do you feel about this study? How do you think this will affect the future of treating brain trauma?

The groundbreaking study on deep brain stimulation offers a ray of hope for individuals grappling with the lasting effects of traumatic brain injuries. As research advances, deep brain stimulation may emerge as a transformative therapy, offering improved quality of life and a chance for recovery for the millions affected by traumatic brain injuries.


Unlocking the Mysteries of the Brain: Bridging Neuroscience and AP Biology

In recent years, neuroscience has unveiled exciting breakthroughs in our understanding of the human brain, revealing its intricate nature. Thanks to the National Institutes of Health’s BRAIN Initiative and the work of the BRAIN Initiative Cell Census Network, we are now diving deeper into the cellular makeup of the brain. This research aligns with our AP Biology lessons on cell structure. It highlights the highly organized nature of nerve cells, reinforcing the concept that cells are the fundamental building blocks of life.

Neuron Cell Body

One remarkable achievement of this research is the creation of detailed cell maps of human and nonhuman primate brains. This development aligns with our AP Biology class, where we have learned about the fundamental concept of cell structure. Cells are, indeed, the building blocks of life, and this research demonstrates how, even in the complex nervous system, all cells exhibit a specific and organized arrangement.

This exploration also highlights the intriguing similarities in the cellular and molecular properties of human and nonhuman primate brains. These shared features reflect our evolutionary history and the conserved nature of brain structure across different species. The research suggests that slight changes in gene expression during human evolution have led to adaptations in neuronal wiring and synaptic function, contributing to our remarkable ability to adapt, learn, and change.

In our recent studies on neurons, we have learned about the fascinating world of these specialized cells. Our understanding of neuron structure and function provides a foundation for comprehending the significance of the research conducted under the BRAIN Initiative. This supports that the brain’s structure is not fixed but adapts to meet the challenges it faces.
The primary goal of the BRAIN Initiative Cell Census Network is to create a comprehensive record of brain cells. This understanding aids in comprehension of the development and progression of brain disorders. By learning the cellular composition of the brain, we can address the challenges that arise when things go wrong, promising a brighter future in the field of brain science.

As we reflect on these intriguing connections between neuroscience and our AP Biology knowledge, it is evident that our class has equipped us with a fundamental understanding of cell structure. This knowledge has proven invaluable in making sense of groundbreaking neuroscience research. I find this as a very intriguing and exciting journey, and scientists are actively committed to understanding the brain’s remarkable adaptability, the key to its functioning and evolution. As we explore the fascinating connections between neuroscience and our AP Biology knowledge, how could this deeper understanding of the brain’s adaptability and structure impact the future of healthcare and treatments for neurological conditions? Feel free to share your views and insights!

Anxiety vs Sleep, A Battle of the Sexes

Overview

A new discovery has been made which may help explain the higher prevalence of sleep disruption and anxiety in women, not only leading to better treatments for anxiety and sleep but also strengthening our understanding of how the brain varies between the two sexes.

What We Know vs What We Don’t

Insufficient sleep is already known to be a cause of anxiety. However, this might not be the case for everyone, or at least to the same extent. When considering sex, “women are proven to experience a greater anxiogenic impact in response to sleep loss than men”. Yet it is unknown which regions of the brain govern sleep-loss-induced anxiety and how these regions’ reactions differ between men and women. A team of scientists led by Andrea N. Goldstein-Piekarski is attempting to find answers by using structural brain morphology. This method will allow them to link anxiety caused by sleep deprivation to the volume and shape of “emotional” regions of the brain between the two sexes.

ANXIETY

Statistical Analysis

Using an ANOVA approximation with the equation below, the scientists were able to decipher whether the amount of anxiety reported via the PSG test for each of the sleep conditions is related to sex and the grey matter volume of the individual’s brain.  

(sleep-deprived[morning-evening]  – sleep-rested[morning-evening]anxiety ~ sex × grey matter volume)

Women demonstrated a significant Time × Condition interaction, expressing a nearly fourfold increase in anxiety on the sleep deprivation night relative to the full night of sleep in morning-evening anxiety. There was no Time × Condition interaction for men in morning-evening anxiety, however, some individuals did experience an anxiogenic response, indicating that this specific consequence of sleep loss is not completely sex-based.  

Women demonstrated a significant negative association between anxiety and gray matter volume in the emotion generation and integration region of the insula/

Gray743 insular cortex

IFG and a marginally significant negative association in the lOFC, which means that gray matter volume did not influence the women’s anxiogenic responses. This incredibly opposes men who, on average, demonstrated significant positiveassociations in the insula/IFG and lOFC. Therefore, although men as a whole did not demonstrate a significant increase in anxiety due to sleep deprivation, the variance of anxiogenic response in men was indeed related to variation in gray matter volume of these regions. 

 

Conclusion

These findings show that women do indeed experience more significant anxiogenic responses to sleep deprivation than men. They also show that the morphology of emotion-relevant regions can explain the variance and vulnerability of men to anxiogenic reactions to sleep deprivation. 

What Now?

Such findings suggest that for women especially, targeted sleep restoration may offer a novel, non-pharmacological therapeutic pathway for ameliorating anxiety. This research can also improve public health awareness about the importance of sleep, especially for those who are at a greater risk of anxiety disorders. 

Connection to AP Bio

Research from Johns Hopkins has shown that the anxiety and stress response can often lead to mitochondrial damage. Since anxiety and stress can cause the physical symptoms of increased heart rate and breathing, the mitochondria are pushed to provide more energy through cellular respiration. This can be detrimental to an individual who is in a constant state of stress and anxiety as the mitochondria have very little repair mechanisms, which would then harm the body’s overall production of energy. In relation to the study, this information conveys that sleep deprivation not only affects mood and physical performance but also organelles and basic cellular functions.

Dictionary

  • Structural Brain Morphology – the study of the structural measures of the brain, e.g., volume and shape 
  • Vulnerability Biomarker – any substance, structure, or process that can be measured in the body or its products and influence or predict the incidence of outcome or disease (WHO)
  • Anxiogenic – producing anxiety 
  • ANOVA – an analysis of variance between more than two groups
  • Polysomnography (PSG) – a test conducted to diagnose sleep disorders

Could A Simple Plant Principle Help Us Better Manipulate The Brain?

The researchers and scientists at Weill Cornell Medicine are working on a family of light-sensing molecules with great haste. This research can advance the very complicated field of optogenetics. There are light-sensitive proteins that play a very important role in the field of biology as a whole. This has to do with topics ranging from its use in photosynthesis to even our own vision. In photosynthesis these proteins are how plants are able to absorb the photons given off from the sunlight and react by using it as an energy source. Most of the information on these types of proteins are from the specific protein bacteriorhodopsin, which is seen in these photosynthetic reactions. However we can only study this protein to a certain point given the technology we have which has lead researchers to a road block. This new study which is being called; line-scanning high-speed atomic force microscopy, will help pass this block. 

Rat primary cortical neuron culture, deconvolved z-stack overlay (30614937102)

 

The problem that was occurring when studying this field was that the tracking of activity of individual molecules was too slow to see the protein actually change, for example how bacteriorhodopsin reacts to light. The new approach involves sacrificing the image detail of the altering molecules for a much faster frame rate. It is as if one was taking blurrier pictures of a horse in order to capture its entire journey. According to Dr. Perez Perrino they are tracking the protein every 1.6 milliseconds in order to speed of bacteriorhodopsin in its natural, wild-style habitat. As a result of light it will switch between open and closed states. With this new method of imaging they have concluded that the transition to the open state and the its duration always happen at the same speed. However the molecule remains in the closed state for a longer period of time as the light increases.

Optogenetics begins to play a role because researchers in this field insert genes for light-sensing molecules in neurons or other cells, causing them to alter the cell’s activity. This work could potentially help us control the brain in ways we could never imagine. This could lead to eventually treating neurological diseases in the near future.

Dead Pig Brains Were Brought Back to Life…Kind Of

A recent article published by Christof Koch raises the question of if death is really as final as it seems.

Koch highlights a study undergone by a sizable team of physicians and scientists at Yale School of Medicine, led by Nenad Sestan. This group used hundreds of slaughtered pigs from the Department of Agriculture to carry out a rather extraordinary experiment. 

The experiment began with the removal of the pig brains from the pigs’ skulls. The veins and carotid arteries were then connected to a perfusion device that created the effect of a heart beating. This perfusion device circulated a synthetic concoction, or a type of artificial blood, containing drugs and oxygen with a specific molecular constitution that would protect the cells from damage. Sestan’s team studied these pig brains’ capability to survive four hours after the pigs had been electrically stunned, bled out, and decapitated. His team also compared these pig brains with others that were not connected to a perfusion device. 

A closer look on a pig brain (not from the actual experiment)

The tissue integrity of the pig brains that were connected to the perfusion device was preserved and there was also a decrease of the swelling that causes cells to die. In addition, synapses, neurons, and output wires (axons) looked normal. The glial cells, which support neurons, had some function, and the brain consumed glucose and oxygen. This means that there was some metabolic functioning. The researchers seemed very satisfied with their findings and titled their paper “Restoration of Brain Circulation and Cellular Functions Hours Post-mortem.”

However, brain waves, like those from EEG recordings, were not found in the pigs’ brains that were connected to the perfusion device. There were electrodes put on the surface of the brains but no great global electrical activity was recorded. This, although, was intended. In theory, bringing a pig that had just gone through such trauma back to life could’ve led to a number of horrible side effects. Some include massive epileptic seizures, delirium, deep-seated pain, distress, and psychosis. It was because of this fact that Sestan’s team ensured the artificial blood contained drugs that suppress neuronal function. 

According to Koch, this experiment causes a new question to surface: “What would happen if the team were to remove the neural-activity blockers from the solution suffusing the brain?”. In reality, it is probable that nothing would happen. Even though some neurons responded to the stimulation doesn’t mean that millions would be able to. However, it can’t be completely disregarded that maybe with some external support the seemingly dead brains can be brought back to life.

Keeping this in mind, one may wonder if this can be applied to human brains. The pig brain is the most popular laboratory animal as it has a fairly large brain that has a folded cortex similar to that of a human brain. Because of this, in theory, the human brain could undergo the same experiment. Even so, the question of if this would really be ethical or not is a factor that should definitely be taken into consideration.

If possible, do we have the right to bring dead brains back to life?

How Did Our Baby Learn That Word?!?!

Jason Sudeikis’ character is hosting a nice dinner party with his wife played by Jennifer Aniston, and all seems to be going great. Then, all of a sudden, their 12- month-old baby blurts out a curse word! “How could our baby learn such a thing?” In a flashback 8 months earlier, we see the less-experienced parenting pair blurt out some pretty R-rated things in a fit of frustration on the road with their baby in the backseat. And so the punch line sinks in.

In modern day parenting comedies, scenes like this fabricated one are a dime a dozen. But these humorous takes on life always get at least one thing right: babies are sponges. Let’s take a look at why on a cellular level.

image source: https://commons.wikimedia.org/wiki/File%3AComplete_neuron_cell_diagram_en.svg

Prior to birth, most neurons migrate to the frontal lobe of the brain where, during postnatal development, they link together and forge connections, allowing a baby to learn proper responses to stimuli. The “circuits” formed by the neural connections are incredibly flexible during the early months of development (roughly the first 6 months) and can quickly be formed or severed, resulting in a remarkable neonatal human ability to rapidly pick up new knowledge about our surroundings. But how are they so malleable?!

Researchers at the University of California, San Francisco may have the answer! In a study coauthored by neuropathologist Eric Huang, they found neurons forming a chain moving towards the frontal lobe from the sub ventricular zone, a layer inside the brain where nerve cells are formed, in infants up to 7 months old!

This research seems to point to the idea that these new brain cells form connections with the pre-existing neurons in the frontal lobe later in the infant’s development, resulting in more cognitive flexibility for a longer period of time.

To quote the original article by Laurel Hamers, what the new neurons are doing is analogous to “replenishing the frontal lobe’s supply of building blocks midway through construction”.

Huang’s team observed postmortem infant brain tissue under an electron microscope and discovered a group of neurons synthesizing migration proteins, but the real major discovery came with the observation of rare tissue acquired moments after death. The team injected viruses tagged with glowing proteins into the neurons (thus making the nerve cells glow) in the sample and tracked their movement. While infants up to 7 months old were observed with migrating neurons, the researchers recorded the number of migrating cells at its highest at 1.5 months old and saw it diminish thereafter. The migrating neurons usually become inhibitory interneurons which, to quote the original article, are “like stoplights for other neurons, keeping signaling in check”.

So there you have it! To make sure your baby doesn’t learn that bad word, just suck up all the migrating neurons from its brain!

All jokes aside, this research presents an amazing window into the brain development of the most intelligent species on earth! It’s fascinating how it breaks down psychological mysteries using cellular evidence. And it raises new questions about these mobile neurons: When are they created and how long does it take them to move to the frontal lobe?

How do you think this new research will influence our understanding of the creation of social biases? Do you think this will lead to breakthroughs in research on the foundation of Autism spectrum disorders?  Do you have any funny baby stories? Let me know in the comments.

Google Maps… But for your BRAIN?

We have mapped our roads such that we can explore our communities through interactive map softwares, such as Google Maps and Google Earth.  Google Map cars are a common sight every few years as Google endeavors to maintain a hyper-accurate account of the roadways in many countries worldwide.  We are relatively familiar with the world around us, however, we are significantly less familiar with our brains.  The brain is a vastly complex organ of your body, and is the center of the nervous system.  Globally, neuroscientists are studying the brain to similarly map the brain. Presently, we are limited in our understanding of the extent of and interaction within the neural networks.  Nevertheless, we do have a massive understanding of the brain’s macrostructure and its mechanisms of function.  Through the development of advanced imaging softwares in the recent decades, research on the more intricate systems of the brain has intensified. fMRI scans have allowed greater insight on the brain’s “connectome.” This “connectome” comprises the many links to the hundreds of regions in the brain and the billions of neurons. Through computer modeling, we have been able to augment our understanding of the brain and create these amazing (and beautiful) models of brains:

The Human Connectome

 

The Human Connectome: https://en.wikipedia.org/wiki/File:The_Human_Connectome.png

The Human Connectome Project began in 2009 and has been organized into two consortiums by the National Institute of Health: The Washington University in St. Louis – University Minnesota consortium and the Harvard University/Massachusetts General Hospital – UCLA consortium. The goal is to compile massive amounts of data on the healthy adult brain and map it down to the neuron– just like Google has mapped (nearly) every road in the US. Additionally, the project seeks to  facilitate research into brain disorders such as dyslexia, autism, Alzheimer’s disease, and schizophrenia through developing more advanced neuroimaging platforms and creating a wealth of information to study the effects of these neurological disorders and diseases, insofar as how they function and change the interaction of the brain–similar to how you would take use the navigation functions in your GPS.

 

Similar to the Human Connectome Project endeavor to map the brain, a “citizen-science” platform for brain mapping, Eyewire, seeks to map the brain by providing the fMRI scans of the brain and allowing users to build the 3 dimensional structure of a section of a single neuron.  This program is a fun online game that actually contributes to science, in that users can map sections of the brain, and be checked by the computer.  This allows for error mitigation, where the computer model may be erroneous, and corrected by the many users mapping the neuron at a time. The link can be found here, as well as below.

The Human Connectome Project and the Eyewire mapping game are both revolutionary research projects studying the amazingly intricate brain neuronal structure and networks, with very promising results in the near future.

 

Original Article: http://www.scientificamerican.com/article/a-massive-global-effort-maps-how-the-brain-is-wired/

Eyewire Project Game: http://www.eyewire.org

While studying the brain there arises the need to activate or inhibit certain cells. The most common process for doing this in the past was optogenetics. Optogenetics is the use of light to activate or inhibit cells. While optogenetics is very precise, it has some drawbacks and limitations. Light is scattered in the brain and to reach deep in the brain scientists usually insert a fiber optic cable which is highly invasive. This practice is still used today, but there has been a new development: sonogenetics. Researchers at the Salk lab have been working on this new technique. Sonogenetics use sound waves, low-frequency ultrasound waves to be more specific, to activate the neurons. This new method allows scientists to reach neurons deep in the subject’s brain without having to perform a surgery to implement a fiber optic cable. It also has the potential to have no effect on the surrounding neurons. In the Salk laboratory, the scientist used worms to study the use of sonogenetics. Worms would normally be impossible to work with as performing surgery to implement a fiber optic cable is nearly impossible, but with the use of sonogenetics the scientist were able to activate certain neurons. The sound waves were aided by microbubbles outside the worm that oscillated in size in conjunction with the wave. The scientist then discovered TRP-4, an ion channel which can be affected by the sound waves. They found that the sounds waves along with the microbubbles can open these channels and activate the cell. Though this process they activated cells that would normally not have been activated by ultrasound. Although it all sounds very promising, sonogenetics has only been used on Caenorhabditis elegans neurons.

imgres

 

A picture of Caenorhabditis elegans

 

https://en.wikipedia.org/wiki/Caenorhabditis_elegans#/media/File:CelegansGoldsteinLabUNC.jpg

The next step in the research would be to get the sonogenetics to work in a mammal’s brain. This could potentially lead to therapies that are non-invasive for humans. However, how comfortable would you feel with doctors using sound waves to control neurons in your brain? Sonogenetics sounds very promising and contains a lot of upside, however, the research is not far enough along yet to completely tell.

 

Original Article: http://www.salk.edu/news/pressrelease_details.php?press_id=2110

 

For More Information: http://dujs.dartmouth.edu/news/sonogenetics-the-latest-in-mind-control#.VhMJimRViko

 

How to stick with your New Years Resolutions

 

bicycling  In Tracy Cutchlow’s article “How to Trick Yourself into Exercising” she talks about the difficulty of sticking to your new years resolutions.  Year after year peoplecreate resolutionsthat involve things such as consistent exercise, but they struggle to actually act on their resolution.  So Tracy spoke with a psychologist about possible techniques that would enable her to “trick herself into exercising.”  The psychologist’s technique involved a relatively simple three step procedure.  The first step is to create a “ridiculously realistic goal.”  For example, rather than say you are going to exercise everyday, start off with three days a week.  The next step involves accountability.  This could mean writing notes in your phone or putting a calendar up on the fridge to remind you about your resolution and to help you keep track of your progress.  The final, and most important step, is to create a “painful consequence.”  For Tracy this meant that if she ever failed to maintain her three days a week resolution, she would have to give $500 dollars to an organization that she “hates” (Comcast).  The purpose of the painful consequence is to essentially make breaking your resolution so unappealing that it eventually becomes a rule.  In his book How Children Succeed: Grit, Curiosity, and the Hidden Power of Character, author Paul Tough describes thegeneral science behind how creating rules for yourself is an effective method for maintaining discipline. He writes, “When you’re making rules for yourself, you’re enlisting the prefrontal cortex as your partner against the more reflexive parts of your brain. … Rules are a metacognitive substitute for willpower. By making yourself a rule (“I never eat fried dumplings”), you can sidestep the painful internal conflict between your desire for fried foods and your willful determination to resist them.”  So Tracy Cutchlow’s article provides a means through which we can create rules for ourselves and in turn, successfully adhere to our resolutions.

Image URL: http://commons.wikimedia.org/wiki/Category:Exercise_motivation#mediaviewer/File:Cycling_Time_Trial_effort.jpg

Related Reading:

http://www.paultough.com/the-books/how-children-succeed/

http://www.ballyfitness.com/trick-yourself-into-exercising.aspx

http://www.apa.org/helpcenter/resolution.aspx

Dying Brain cells signal new brain cells to grow in songbird

BIRD

 

Original article: http://www.sciencedaily.com/releases/2014/09/140923182051.htm

In a recent paper written by leading author Tracy Larson and co-authors Nivretta Thatra and Brian Lee, they discovered a brain pathway that replaces brain cells lost naturally. This study could further the progress of using replacement cells for the neurons lost during aging, Alzheimer’s Disease, and other natural causes.

These scientists used songbirds, specifically Gambel’s white-crowned sparrows, as a model and observed that the area of their brain that controls song increases during breeding season, and decreases during other times in the year. After breeding season the cells in the area of the bird’s brain that controls songs undergoes programmed cell death. What is noteworthy about these dying cells is that they are also releasing a signal that reaches certain stem cells in the brain that will eventually redevelop the singing part of the brain by the time the next breeding season arrives. This process of developing new neurons from stem cells called neurogenesis normally occurs in the form of “regenerative” neurogenesis post brain trauma in mammals; however, it also occurs in the hippocampus in small amounts.

These songbirds could provide insight on how the human brain can perform natural neurogenesis and help replace neurons lost because of aging and neurodegenerative diseases. These finding may pave the way to alternative treatment for repairing human brains using neurogenesis and replacement cells.

Antidepressants Change Brain Connectivity After One Dose

2305701220_0fc3d01183_b

 

Lloyd Morgan- “Despair”

The prescribing of anti-depressants is a controversial topic in that most scientists are unaware how these medications work. Previously, SSRIs (serotonin reuptake inhibitors) were thought to have taken effect after a few weeks. Recent studies show, rather, that these medications take effect in a matter of hours.

SSRIs are very widely prescribed and frequently studied as antidepressants. They work by fundamentally changing brain connectivity and the way in which the brain undergoes simple processes. New studies are showing that this rewiring of the brain occurs after only one dose of this medication, producing dramatic changes.

The Institute for Human Cognitive and Brain Sciences conducted this study by conducting extensive brain scans, allowing participants to let their minds wander so that the lab technicians could accurately measure the oxygenation of the blood flow in the brain as well as the number of connections between voxels in the brain.

This lab yielded interesting results. Scientists discovered that one single dose of SSRI reduced the level of intrinsic connectivity in most parts of the brain, but increased connectivity within the cerebellum and the thalamus.

This study opens up a lot of opportunities for deeper investigation into antidepressants. It can help researchers to understand why some people do not respond well to this form of treatment, and how to better individualize treatments for depression patients. Depression is a serious and life-altering illness that effects every sector of a person’s life. With added research and understanding of treatment methods, there can be hope for the many that struggle with this mental illness everyday.

Article Source: http://www.sciencedaily.com/releases/2014/09/140918121436.htm

The Movie of Autism

Stacking repetitively is a behavior often associated with Autism

According to a recent study, “children with autism spectrum disorders (ASD) have trouble integrating simultaneous information from their eyes and their ears,” which has been compared to by Stephen Camarata, Ph.D., professor of Hearing and Speech Sciences at Vanderbilt as similar to, “watching a foreign movie that was badly dubbed.” This study was recently published by Mark Wallace, Ph.D., director of the Vanderbilt Brain Institute and co-authored by Camarata. Their work is incredibly important in the field of diseases such as Autism. Unlike many other

researchers, Wallace and his team have focused on sensory function. Their experiment involved putting groups of children, both with normal function and with high functioning Autism and putting them through a variety of audiovisual stimuli that included, “simple flashes and beeps, more complex environmental stimuli like a hammer hitting a nail, and speech stimuli.” After these tests were done, the researchers asked the subjects to identify which auditory and which visual stimuli occurred at the same time. These test showed that children with Autism have, an :enlargement in something known as the temporal binding window (TBW),” which means they have trouble associating sights and sounds with specific times.

A second aspect of the study also showed that children have trouble associating visual and auditory stimuli from speech, which may have something to do with their constant covering of their ears. Although the data here is not conclusive, it has lead the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition to add sensory processing as a key problem for those who suffer from Autism. The whole study has opened up a new field of inquiry on Autism studies and has the possibility of leading to new advances with other psychiatric diseases such as schizophrenia.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar