BioQuakes

AP Biology class blog for discussing current research in Biology

Author: pintocytosis

Long Term Effects of Bad Diet Linked to Epigenome

Epigenetics has become an increasingly popular topic of scientific study. It is universally understood that DNA carries genes, however the expression of those genes are at the whim of the epigenome. The long-term control of the epigenome over the expression of certain genes is not yet fully understood. Scientist Erik van Kampen of the Leiden Academic Centre for Drug Research at Leiden University in The Netherlands studies epigenetics. He was interested in the mystery of how the epigenome is influenced by diet. He explored the idea of how the effects of a poor diet continue to persist even after a better diet is adopted.

In his study, he used mice that naturally had a high susceptibility to getting high blood cholesterol and atherosclerosis. He fed these mice either a high fat, high-cholesterol diet or a normal diet. After time had passed, bone marrow was isolated from both the unhealthy and healthy diet mice. This bone marrow was transplanted into mice that had their bone marrow destroyed. The new mice with borrowed bone marrow were given a healthy, normal diet for several months. After this time had passed, the mice were measured for development of atherosclerosis in the heart. In addition to this, the mice were measured for the number and status of immune cells throughout the body and epigenetic markings on the DNA in the bone marrow.

The results of this study were staggering. Mr. Kampen found that DNA methylation (which inactivates the expression of genes) in the bone marrow was different in both types of mice. The transplants received from the unhealthy diet mice were seen as having a decreased immune system and increased atherosclerosis in comparison to the ones who had healthy donors. This study proves at least somewhat of a correlation between diet and long-term effects on the body and the expression of genes.

The original article can be found at this address: http://www.sciencedaily.com/releases/2014/11/141103102359.htm

Using Hair To Fix Nerves

Keratin

Scientists at Wake Forest University have discovered that the hair protein Keratin has been shown to speed up the regeneration of nerves in mice. When nerve function is lost, the best option is to use a nerve graft from another part of the body, however this is an issue because it creates another wound site for the patient, which may not be tolerable due to ones condition. In an attempt to create another means of regenerating nerves, Dr. Mark Van Dyke and his team of researchers began to test the Keratin protein (which is found in hair follicles).

To test Keratin for its regenerative properties, Dr. Van Dyke used human hair collected from a barber shop and removed the Keratin from it. They then purified it and created a gel out of it to fill nerve guidance conduits. In order to study how effective the protein was, they studied the Schwann cells. Schwann cells are important in this experiment because they create signals that begin nerve cell regeneration. The results of this experiment showed their hypothesis to be correct, the use of Keratin greatly increased the activity of the Schwann cells. After this proved to be true, the scientists used a keratin-filled tube to try to repair a large nerve gap in mice (about 4 millimeters). The animals treated with Keratin were compared to animals treated with a nerve graft, and animals treated with a placebo. after 6 weeks, the entire keratin group showed visible regeneration, versus the placebo group who had about 50% show signs of regeneration. In addition, the speed of repair for the keratin group was much faster the other groups. 

The results of all of his tests proved his hypothesis of the uses for keratin. “The results suggest that a conduit filler derived from hair keratins can promote an outcome comparable to a grafted nerve,” said Van Dyke.

Article: http://www.sciencedaily.com/releases/2008/01/080110102341.htm

 

You Are What You Eat

Mouse

Whenever a person consumes healthier meals and therefore less calories, according to a new study on mice at the NYU Langone Medical Center, they could be lengthening their lives.

Using female mice, scientists fed one group of mice a diet of pellets containing a high amount of calories, while feeding another group of mice a diet of pellets containing 30% less calories. The hippocampus and the region surrounding it in the brains of the mice were then examined for expression of aging-genes throughout various stages of maturity. The results of the study, while not entirely applicable to humans, has shown that the mice that ate the lower calorie diets had less expression of aging genes and had less risk of chronic illnesses such as hypertension and stroke.

“The study does not mean calorie restriction is the ‘fountain of youth,’ but that it does add evidence for the role of diet in delaying the effects of aging and age-related disease.” Stated Stephen D. Ginsberg, a researcher involved with the study. The study examined more than 10,000 genes related to aging, which is a much larger amount than that previously studied by researchers. While the study was performed on mice, the results could be similar in humans, and the researched performed by Dr. Ginsberg and others should serve as a warning for our ever-indulgent world of fast food and high caloric intake.

Article:  http://www.sciencedaily.com/releases/2014/11/141117110650.htm

Study Shows Link Between Enzyme and Spread of Breast Cancer

4024368125_6cee3d572d_q

 “40,000 women in America will die of breast cancer in 2014.” This is a truly terrifying projection. Breast Cancer is an extremely deadly, and extremely prevalent cancer that affects the lives of millions each year. In my personal experience, I have many friends and family members that have battled against this cancer. So many are affected, and there is still no concrete cure. There is no cure, however, researchers at the University of California, San Diego School of Medicine have identified an enzyme that is closely related to the metastasis of breast cancer cells. This is great news, for it suggests the possibility of further research using this finding to end breast cancer for good. Xuefeng Wu, a lead scientist involved with this research, has stated that the team has been able to “target breast cancer metastasis through a pathway regulated by an enzyme“. This enzyme is called UBC13 and it regulates the activity of a protein called p38.

This p38 protein, when not in use, prevents metastasis. By identifying the enzyme that prevents the use of p38, researchers have come one step closer to preventing the spread of breast cancer in the body, and therefore defeating it. With the use of a lentivirus injected into the mammary tissues of mice, the scientists were able to suppress the functions of both UBC13 and protein p38. The mice grew primary tumors, as was expected, however the primary tumors did not metastasize and spread breast cancer cells throughout the bodies, which means the cancer was stopped from spreading throughout the body. This prohibition of the cancer cells to spread is a major breakthrough in breast cancer research and will without a doubt contribute greatly to the ending of breast cancer.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar