Epigenetics has become an increasingly popular topic of scientific study. It is universally understood that DNA carries genes, however the expression of those genes are at the whim of the epigenome. The long-term control of the epigenome over the expression of certain genes is not yet fully understood. Scientist Erik van Kampen of the Leiden Academic Centre for Drug Research at Leiden University in The Netherlands studies epigenetics. He was interested in the mystery of how the epigenome is influenced by diet. He explored the idea of how the effects of a poor diet continue to persist even after a better diet is adopted.

In his study, he used mice that naturally had a high susceptibility to getting high blood cholesterol and atherosclerosis. He fed these mice either a high fat, high-cholesterol diet or a normal diet. After time had passed, bone marrow was isolated from both the unhealthy and healthy diet mice. This bone marrow was transplanted into mice that had their bone marrow destroyed. The new mice with borrowed bone marrow were given a healthy, normal diet for several months. After this time had passed, the mice were measured for development of atherosclerosis in the heart. In addition to this, the mice were measured for the number and status of immune cells throughout the body and epigenetic markings on the DNA in the bone marrow.

The results of this study were staggering. Mr. Kampen found that DNA methylation (which inactivates the expression of genes) in the bone marrow was different in both types of mice. The transplants received from the unhealthy diet mice were seen as having a decreased immune system and increased atherosclerosis in comparison to the ones who had healthy donors. This study proves at least somewhat of a correlation between diet and long-term effects on the body and the expression of genes.

The original article can be found at this address: http://www.sciencedaily.com/releases/2014/11/141103102359.htm

Print Friendly, PDF & Email