BioQuakes

AP Biology class blog for discussing current research in Biology

Author: Morganic Bolecules

CRISPRainbow

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)and CRISPR-associated protein 9 complex has become one of the biggest technological advances in science. This genome editing technology has taken multiple advances toward closer research into studies of embryonic development to cancer. CRISPRainbow, a modification to CRISPR where the Cas9 is mutated, allows researchers to label up to seven different genomic locations in live cells.
CRISPR has been used for editing genomes, however, research specialist Hanhui Ma and his team has used it to label DNA and track the movement of DNA in live cells. With this new research, we can find the precise genomic location in order to understand the movement of chromosomes. This is important because the genes that create our biological make-up and control our health do so by their location in the 3-D space.
Currently, with CRISPR, we can only label three genomic locations at a time in each cell. It has extremely challenged scientists to label more sites because it would require cells to be mixed in formaldehyde, which would kill them, making it impossible to observe the chromosome’s structure when stimulated by a response.
The new Cas9 mutation causes the nuclease to deactivate, so it only binds to DNA and doesn’t cut the genome. Then, the CRISPRainbow is docked into location by the guide RNA which can be programmed technologically. Research specialist, Hanhui Ma was able to figure out a way to implement computational coloring. Each guide RNA would include one of the three primary fluorescent proteins: red, green or blue which then can be observed in real time under a microscope. Pretty cool, right? Well, guess what? It doesn’t stop here. Ma decided to go even further in his research and attach a second fluorescent protein to the guide RNA. Ma could then combine the three primary colors to generate three additional labels: cyan, magenta, and yellow. From the primary colors, he was able to achieve white as the seventh color.
CRISPRainbow can track the challenging and dynamic movement of genomes that may lead to biological consequences. Research Scientist, Hanhui Ma, states “With this technology, we can visualize different chromosome loci at different points in time.” We can observe the structural changes in chromosomes overtime with help us understand their relation to health and disease. So why do you think they called is CRISPRainbow? What kind of diseases can we track with this new technology? What more can CRISPRainbow do in the near future?

Do you really want to eat Sharks?

In a recent study at the University of Miami, scientists found high concentrations of toxins in shark fins and cartilage. These toxins have been very closely linked to neurodegenerative diseases such as Alzheimer’s Disease or Amyotrophic Lateral Sclerosis (ALS). Therefore, the research team suggests that restriction for shark consumption will benefit the consumer’s health and for shark conservation.

Deborah Mash, Professor of Neurology and senior author of the study at the University of Miami, conducted a study to show the concentration of toxins found in a sample of sharks. Fins and muscle tissues were collected from 10 shark species found in the Atlantic and Pacific oceans. The samples were then found to have concentrations of two toxins, Mercury and β-N-methylamino-L-alanine (BMAA). Such toxins on their own pose a health risk, but together it can have a synergistic toxic impact.

Sharks have been known to live in the higher stages of the food web. Therefore, these water creatures have had a longer life span than other creatures in the water. As a result, sharks accumulate and concentrate toxins. This can be quite deadly for the human population as more and more people are in demand for shark parts.

In Asia and and globally in Asian communities, shark products have been used in many food selections. Shark fins, cartilage, and meat are used as a delicacy and as a source of traditional Chinese medicine. Therefore, 16% of the world’s shark species have been threatened with extinction.

“Our results suggest that humans who consume shark parts may be at a risk for developing neurological diseases.” said Mash. Limiting the consumption of sharks will provide health benefits and a positive conservation outcome for sharks.

So before you order the shark fin soup from the menu, think about how your health could be affected. Think about the endangered sharks in our oceans. Let’s do it for the sharks!

 

Hair Saving Option with Chemotherapy

Scientists have been finding a way to prevent hair loss after the painful process of cancer treatment, Chemotherapy (Chemo). Hair loss is one of the biggest feared side-effects. A recent study showed that 75% of female patients who had breast cancer feared the side effect of losing hair. Hair loss scored the highest in a Swedish nurse’s study that investigated the quality of life in patients who had breast cancer. With the help of Sung-Jan Lin, a scientist at National Taiwan University, a protein was made that could withstand the distressing effects of Chemotherapy.

There are a few other options for people receiving this treatment. Some will try to put on scalp-cooling caps to freeze the chemo drugs from entering the hair follicles. However, this process is expensive and only works for 50% of the people. The treatment could end up being longer than expected, and can cause mild to severe headaches and discomfort.

Lin describes that part of the problem is that we have such a limited knowledge of how Chemotherapy damages hair follicles.

In short, his team looked at a protein called p53. This protein functions to limit tumor growth, but also helps suppress hair growth (hair cells divide rapidly like tumor cells)

Studying P53, Lin found out that the protein was blocking a hair-promoting protein WNT3A. This stimulated his team to ask the following question. Is injecting WNT3A directly into the scalp while administering Chemo prevent hair loss?

The team decided to experiment with mice with a chemotherapy agent, and soon enough the results matched their hypothesis. One group of mice were injected with WNT3A soaked beads. And sure enough, that group sustained their hair. While the other group that was not given WNT3A loss all their hair.

Lin and his team are now working to adapt his studies on human patients. As stated by Lin it would be unsafe to inject WNT3A in bead form. As a result, they are working to create the protein in a gel or cream solution.

With this new hair saving option, the cancer treatment will seem less fearful for some patients. This treatment could be a big help for the future. Scientists are working to expand their knowledge on how to effectively provide treatment without endangering our human traits.

So after hearing all this, what do you feel about this new idea? Will the “power of proteins” eliminate other side effects provided by Chemotherapy? If so, what kinds? Let me know in the comments below.

Photo link and photographer:

www.flickr.com/photos/calliope/6025359063

Liz West

Powered by WordPress & Theme by Anders Norén

Skip to toolbar