BioQuakes

AP Biology class blog for discussing current research in Biology

Author: rackolam

Editing the Brain Using Epigenetic Tools

Epigenetics is a huge part of our life and influences us in ways we may not be aware of. Did you know that it is impossible to create and save new memories without epigenetic tags? The brain is heavily reliant on Epigenetics to do its functions, and this makes it a huge topic of research to figure out the ways in which the epigenetics of the brain could affect certain diseases or memory. Recently special epigenetic molecular tools have been created that can erase specific epigenetic markers throughout the genome. The possible effects these tools could have on the curing of diseases of the brain or psychological ailments are tremendous.

These “epigenetic editing” procedure use either CRISPR (clustered, regularly interspaced, short, palindromic repeats) or TALE (Transcription activator-like effector) systems of modification. These systems can carry an Epigenome modifying enzyme and deliver it a specific site they are programmed to go to. This allows researchers to target very specific epigenetic changes and either shut them down or turn them on and possibly determine their correlation with certain ailments of the brain. “We’re going from simply being able to observe changes to being able to manipulate and recapitulate those changes in a controlled way,” Day said. This quote from Day, one of the researchers of this project, shows that we advance from only being able to observe epigenetic influences on the brain, to being able to manipulate and control them to potential aid us in combating diseases.

Researchers can catalog all of the epigenetic changes involved in forming and preserving a new memory. If we are able to track these epigenetic changes, then could we implant memories in to a person’s mind, by copying similar epigenetic changes? These researchers where also able to trigger not only the place where epigenetic change happens, but also the exact time using optogenetics. This form of using light to control neurons allows researchers to use the TALE system and a light switch apply epigenetic change to very specific brain regions or cell types.

One of the final goals of this research is to eventually be able to use epigenetic as a form of therapy to benefit PTSD, depression, schizophrenia, and cognitive function using the ability to alter epigenetic marks. This can also be used in a similar way to silence mutated genes that are damaging the cells or the body as whole. This form of using TALE and CRISPR to alter epigenetic tags creates a lot of hope for PTSD, depression, schizophrenia, Alzheimer’s, Parkinson’s, Huntington’s and other similar disease treatment options.

Human skin cells reprogrammed directly into brain cells

Brain

 

Original article: http://www.sciencedaily.com/releases/2014/10/141022123021.htm

Some key words:

Neurodegenerative diseases: Disease such as Alzheimer’s, Parkinson’s and Huntington’s disease that undergo a neurodegenerative process, specific neurons are targeted for degeneration.

Spiny brain cell: The desired end brain cell in this study, and a brain cell affected by Huntington’s disease

 

In a study by the researchers at Washington University School of Medicine in Saint Louis, they demonstrate a way for human skin cells to be specifically converted to a type of brain cell. This study can help in the rehabilitation of people with Huntington’s disease by turning skin cells in to brain cells that are lost through this neurodegenerative disease. This is all accomplished without passing through the stem cell phase preventing other cell types forming.

This research involved adult skin cells that Yoo, the senior author, and his colleagues reprogrammed by using two microRNAs: miR-9, and miR-124. These micro RNAs open up the otherwise tightly packaged and inactive sections of the gene critical to the formation of brain cells. While the micro RNAs open up genes used for the creation and functionality of neurons, transcription factors taken from a part of the brain where medium spiny neurons are common directs the newly formed brain cells to a specific subunit of brain cells. The researchers then observed that the newly formed brain cells behave and function in a similar way to the native medium spiny neurons in mice, allowing this study to proceed in to further stages of experimentation, and hopefully result in a treatment practical for human use.

This study is very critical in the advancement of the treatment for neurodegenerative disease such as Huntington’s disease. Using different transcription factors from parts of the brain, alternate types of brain cells can be created to replace cells lost from neurodegenerative effects. This form of treatment will also prevent rejection of the transplant because the skin cells can be taken from the patient’s own body. This is a breakthrough in our pursuit of cures for these lethal neurodegenerative diseases.

Dying Brain cells signal new brain cells to grow in songbird

BIRD

 

Original article: http://www.sciencedaily.com/releases/2014/09/140923182051.htm

In a recent paper written by leading author Tracy Larson and co-authors Nivretta Thatra and Brian Lee, they discovered a brain pathway that replaces brain cells lost naturally. This study could further the progress of using replacement cells for the neurons lost during aging, Alzheimer’s Disease, and other natural causes.

These scientists used songbirds, specifically Gambel’s white-crowned sparrows, as a model and observed that the area of their brain that controls song increases during breeding season, and decreases during other times in the year. After breeding season the cells in the area of the bird’s brain that controls songs undergoes programmed cell death. What is noteworthy about these dying cells is that they are also releasing a signal that reaches certain stem cells in the brain that will eventually redevelop the singing part of the brain by the time the next breeding season arrives. This process of developing new neurons from stem cells called neurogenesis normally occurs in the form of “regenerative” neurogenesis post brain trauma in mammals; however, it also occurs in the hippocampus in small amounts.

These songbirds could provide insight on how the human brain can perform natural neurogenesis and help replace neurons lost because of aging and neurodegenerative diseases. These finding may pave the way to alternative treatment for repairing human brains using neurogenesis and replacement cells.

Sensing neuronal activity with light

neurons

Researches have recently developed a tool that may help in mapping the neural networks of living organisms using light. Observing these electrical signals of neurons can lead to numerous advancements in our understanding of neural circuitry.

In a collaborative study between Viviana Gradinaru, Frances Arnold and Barbara Dickinson, they developed a method to sense neuronal activity with light. These researchers used a protein named Archaerhodopsin (Arch) and exploited its light responsive qualities. They were able to optimize Arch through a process known as directed evolution. Using this method they created a variant of the Arch protein, called archer1 that acted as a voltage sensor under a red light and an inhibitor under a green light, while generating a light intensive enough to detect. When this protein acts as a voltage sensor it can show which neurons are active and synaptically connected and which aren’t under certain stimuli.

These researchers were able to test Archer1 in the worm C. elegans, which was chosen for its near transparent tissue that made it ideal for observing the luminescent protein. This was the first place they were able to observe the circuits of the neurons light up if they were expressed and dim down if they were repressed. For future studies they hope to make Archer1 bright enough to be detected through opaque tissue and accurate enough to detect voltage changed in more complex, behaving mammals. This study can prove to help us in our understanding of neural networks.

Original papers:

http://www.pnas.org/content/111/36/13034

http://www.nature.com/ncomms/2014/140915/ncomms5894/full/ncomms5894.html  (You can only read abstracts; you have to pay to read the full text)

Powered by WordPress & Theme by Anders Norén

Skip to toolbar