BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: Illness

The New Source of Mental Illness

a three dimensional recreation of DNA methylation

a three dimensional recreation of DNA methylation

For years scientists were convinced that the root cause of diseases such as bipolar disorder and schizophrenia lay somewhere hidden in the human genome. But the particular genetic sequence that would supposedly be linked to these illnesses remained elusive.  So researches turned to the developing theory of Epigenetics.  Studies from King’s College in London and related in this article have shown that Epigenetic (changes in gene activity caused by the environment) changes might be responsible for bipolar disorder and schizophrenia.  Jonathan Mill and colleagues scanned the genome of 22 pairs of identical twins.  For each pair of twins, one of the twins was diagnosed with either bipolar disorder or schizophrenia. With the understanding that chemical methyl groups attached to particular sites on a genome are responsible for the “turning of” and “turning on” of genes, Mill and his team “scanned for differences in the attachment of methyl groups at 27,000 sites in the genome.”  The researches found variations in the amount of methylation of up to 20 percent in the gene ST6GALNAC1 (which has been connected with schizophrenia) and differences in the amount of methylation of up to 25% in the gene GPR24 (which had previously been linked to bipolar disorder).  Interestingly Mill’s team found that “a gene called ZNF659, showed over methylation in people with schizophrenia and under-methylation in those who were bipolar, suggesting that the conditions might result from opposing gene activity.  These findings certainly support the theory of Epigenetic’s being a real factor in behavior and mental illness.  They also serve to confirm that bipolar disorder and schizophrenia are related disorders.  This relates to our unit in the sense that Epigenetics deals with the expression of the DNA and genetic sequence we are learning about.  While we read about how the nucleotides are sequenced, Epigenetics could potentially be responsible for how DNA is expressed.

Related reading:

http://www.nytimes.com/2010/11/09/health/09brain.html?_r=0

http://bipolarnews.org/?tag=epigenetics

http://www.psychiatrictimes.com/bipolar-disorder/psychiatric-epigenetics-key-molecular-basis-and-therapy-psychiatric-disorders

CHIPping away at Disease

Photo Credit: ngineerit flickr

Many people suffer from chronic illnesses that require daily, even hourly, injections of medication. These injections can be frustrating, annoying, and dangerous. However, after 15 years of work, MIT professors Robert Langer and Michael Cima finally created a microchip that can be implanted once and can distribute dosages of medicine for extended periods of time. The device delivers the same dosages as the injections. In fact, Cima and Langer found that the chip delivered the dosages at a more consistent and accurate rate than the injections.

The chip would be a major help to people who need injections of medicine because it wouldn’t give them any reason, such as pain, to skip their dose. The chip can be implanted in about 30 minutes and in a trial study there were no side effects. They implanted seven women from 65 years of age to 70 years of age who suffer from osteoporosis. The chip diligently delivered their medicine for four months. This new technology can be expanded to deliver several medications for longer periods of time. It could save millions of people from daily pain.

Tricky Viruses

Photo Credit: Foto_di_Signorina Flickr

           Strong viruses, such as HIV, make the body work for them. Researchers in Copenhagen have been studying how these viruses manage to take over the body. The virus takes over one cell and then uses the RNA to influence the DNA, giving the virus complete control over the cell. The RNA of the virus is similar to the RNA of the cell. Therefore, the ribosomes of the cell copy the sequence from the virus instead of the actual RNA. This causes the cell to produce the virus’ proteins.

                The RNA of the virus has what is called a pseudoknot. Pseudoknots are places on the RNA that the ribosomes must decipher before it can move on. The pseudoknot holds the sequence for key destructive proteins of the virus and once the ribosome deciphers it, those proteins are produced. This is how HIV can spread so rapidly in the body and can take such a hold over the host; it doesn’t do any of the work.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar