A soft robot created by Princeton and North Carolina State University engineers was influenced by both modern materials research and ancient paper folding techniques. This robot is designed to go through mazes with ease. Soft robots are typically less flexible and more rigid when equipped with steering equipment. But in order to preserve the robot’s flexibility, this innovative design incorporates the steering mechanism right into the body of the machine.

Soft Robotics

Moreover, the robot consists of modular, cylindrical segments that can operate independently or combine to form longer units. The cylindrical segments, with a Kresling pattern, allows them to twist and expand. This motion enables the robot to crawl and change direction.With this design, they are able to be more flexible. This flexibility allows the robot to do multiple tasks such as crawl forward/backward, pick up items, and assemble into longer forms. Additionally, each part  of the robot can act as an individual unit and communicate with other parts to assemble/ separate as needed; these parts are connected by magnets. When looking to the future, researchers hope that the soft robots and the technology around them can grow, repair, and develop new functions based on this modular concept.

Furthermore, the researchers add that it was difficult to control the robot’s bending and folding operations. And so, they created a solution by combining materials that change in size or shape when heated with stretchy heaters composed of a network of silver nanowires. Although the robot’s current pace is restricted, scientists are working to enhance its ability to move in future versions.

Overall, this unique soft robot has potential applications in a number of industries, including aerospace, construction, and medical equipment. The National Institutes of Health and the National Science Foundation contributed funding for the study.

This topic relates to the AP Biology unit of ecology because the robot’s modular design, where individual segments can operate independently or combine, reflects the concept of modularity seen in ecological systems. In ecosystems, organisms often interact and cooperate with others to form larger structures or achieve common goals, similar to how the robot’s segments work together. And even though I do not have an exact connection to this topic, I am reminded of middle school when my science class was instructed to create their own “robot” out of material from the classroom. 

Print Friendly, PDF & Email