As the threat of antibiotic-resistant bacteria becomes a bigger threat, the production of new antibiotics is necessary. The Texas A&M-led collaboration, consisting of many different scientists and organizations, is doing just that. The group has created a polymer capable of “killing bacteria without inducing antibiotic resistance by disrupting the membrane of these microorganisms.” The polymers work in a way that does not allow bacteria to resist. The polymer was made by designing “a positively charged molecule that can be stitched many times to form a large molecule made of the same repeating charged motif using a carefully selected catalyst called AquaMet.” The catalyst AquaMet is quite a feat, as it has to withstand high concentrations of charges and remain water-soluble. After synthesizing the polymer, the team began testing it on human red blood cells and antibiotic-resistant bacteria, such as E. coli. The Texas A&M-led group of scientists believes testing human blood cells is pertinent to their discoveries, as many current antibiotics cannot differentiate between the bacteria being targeted and other cells. This inability to differentiate bacteria from other cells is the cause of gut health issues as a result of antibiotics, which is why the scientific collaboration wishes to find a balance between controlling the harmful bacteria and attacking other cells.

Single Polymer Chains AFM

Image of a single polymer chain:

In AP Biology, I have learned about polymers and catalysts. Polymers, composed of multiple monomers linked by covalent bonds, are the foundational long-chain molecules in organic compounds. Monomers are the most basic structures in organic compounds. For example, the monomer for carbohydrates is a monosaccharide, and the polymers for carbohydrates are disaccharides and polysaccharides. Secondly, catalysts are any substances that speed up the rate of reactions. Organically, catalysts are found as enzymes. Usually, they work by lowering the amount of activation energy required for a specific reaction. AquaMet, which is the key to creating the polymer, is a catalyst. Having a foundational understanding of polymers and catalysts made the discussed article much more comprehensive, as the antibiotic in trial is an artificial polymer created using a specific catalyst. The topic discussed is very appealing to me because of how important it is. New antibiotics that work against antibiotic-resistant bacteria are incredibly important to human safety. The idea of sickness caused by bacteria without an antibiotic to help you is a scary one, and I am happy to learn of the antibiotic frontier! 

What do you think? What role does the Catalyst specifically play in creating the polymer? Do you think this will lead to large scale production and eventually be used to treat antibiotic resistant bacterial infections?

Print Friendly, PDF & Email