BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: variation

Why Does our Hair Flow the Way it Does?

Do you ever wonder why your hair always naturally parts the same way? Our hair patterns can be described as our “hair whorl.” This denotes the direction in which the hair follicles orient themselves, as well as the number of times the hair rotates in a circular pattern. This can be either a single or double whorl. While this physical characteristic maybe be obvious to the naked eye, it is unclear why these patterns initially occur.

Boy with shiny short hair and whorls, rear view

In a recent study, the National Survey of Physical Traits cohort came together to understand whether or not our hair patterns could be determined by genetic characteristics. In China, Lead Investigator Sijia Wang determined that hair whorl can be a result of four genetic variances, also known as a polygenic inheritance. These variances occur at 7p21.3, 5q33.2, 7q33, and 14q32.13, which are specific locations on a DNA sequence. These variances affect hair patterns due to both cell polarity as well as cranial neural tube closure and extension.

This relates to AP Biology due to the effect of cell polarity on the hair whorl. In class we learned that non-polar (hydrophobic) molecules will move away from polar molecules. Hair cells are classified as epithelial cells, meaning they exist on the outer-most layer of our skin’s surface. They are polarized in sheet known as the planar cell polarity (PCP). The author’s logic makes sense in that a pattern will occur in the hairline if the polar molecules are moving away from those that are non-polar, or vice versa.

Blausen 0806 Skin RootHairPlexus

Additionally, because the whorls can be associated with neural tube closures and growths, it was believed that abnormally placed or shaped whorls can be related to a neurological deficit. However, Dr. Wang’s research did not confirm whether or not this was true.

Now it’s your turn — can you find your hair whorl?

 

Are You Predisposed to Being Overweight? New Genetic Variations Say Yes.

Recent studies composed by researchers from the Spanish National Cancer Research Centre and the IMDEA Food Institute show that people with a specific variation or version of a gene crucial to cell nutrition tend to accumulate less fat. This means that those with a particular change or alteration in this gene may be inclined to store less fat in their bodies. Prior research has shown that genetics only play a role in 20% of our body weight for the general population. This means that other external factors such as diet, exercise, and overall lifestyle have much more of an impact on body weight.

Past research has identified nearly 100 genetic variants which slightly increase one’s likelihood of having a high BMI. This new research identifies one additional variant. Typically genetic variations are only slightly different versions of a gene and often do not result in visible changes. But, this new variation challenges this idea. It affects the amount of fat the body stores, something which can strongly alter one’s physical appearance. What’s more, the researchers of this gene have found that it is more prevalent in Europe with just under 60% of the population having it.

Ácido desoxirribonucleico (DNA)

 

According to Alejo Efeyan, the head of CNIO’s Metabolism and Cell Signalling Group, the new research can help us to further understand the role which genes play in obesity, body weight, and fat accumulation. Efeyan says, “the finding is a step forward in the understanding of the genetic components of obesity.” Additionally, Ana Ramirez de Molina, the director of the IMDEA Food Institute, claims that a key understanding of cell pathways regarding cell nutrition may affect and spur the creation of not only obesity prevention but also personalized treatments. Essentially, understanding the new gene can help us to target obesity and body weight on an individual level rather than the population as a whole. She believes, “a deep knowledge of the involvement of the cellular nutrient-sensing pathway in obesity may have implications for the development and application of personalized strategies in the prevention and treatment of obesity.”

To find and research the genetic variant which influences fat storage and obesity a team from the IMDEA Food institute collected a variety of data from 790 healthy volunteers. This included body weight, muscle mass, genetic material, and more. The researchers found a “significant correlation between one of these variants in the FNIP2 gene and many of these obesity-related parameters.” Essentially their research proved that there is a connection between the specific gene and factors of obesity. The study has also been published in the scientific journal of Genome Biology. Although this gene may play a role in keeping body fat storage lower than others, it is important to note that it is not entirely a preventative measure against obesity or fat gain. Efeyan clarifies, “It is not at all the case that people with this genetic variant can overeat without getting fat.”

The genetic variation is present in a gene that specifically partakes in a signaling pathway that tells the cell what nutrients are available and needed. The gene signals to the cell what nutrition is necessary at a given moment. In our AP Bio class, we learned the intricacies of cell communication; how and why it can occur, the stages of it, and even the differences in the distances of communication. Connecting back to our AP Bio class, I wonder whether the gene interacts in an adjacent, paracrine, or long-distance manner. Also, how the distance can affect the communication of the gene to the cell regarding cell nutrition. We also learned about how genes in the nucleus of our cells can code for specific factors in our bodies and how they are a sort of ‘instructions’ for us to carry out. This connects to the research as we can see that a change in a gene can alter our body’s fat storage and connection to obesity. The genetic variation changed the ‘instructions’ for weight, fat storage, and obesity disposition. Additionally, the research stated that 60% percent of Europeans have genetic variation, I wonder what may have caused this. Was it a result of their diets, lineage, geography, or just a scientific anomaly? I invite any and all comments with a perspective and an idea as to what may have caused this, along with any comments regarding this research as a whole.

Obesity-waist circumference

 

 

Powered by WordPress & Theme by Anders Norén

Skip to toolbar