AP Biology class blog for discussing current research in Biology

Tag: humans

Cancer In Humans VS. Plants

Cancer is a disease that has ranked 2nd in the deaths of the US only falling behind to heart disease. In our AP Biology class, we learned that cancer in humans is caused by a cell that has a genetic defect that is multiplying too quickly causing clumps and tumors. Whilst this has been devastating to humans and other animals for years, how does it affect plants that are another kind of multi-cellular organism?

An article that highlights the effects of cancer on plants states that cancer in plants acts differently than cancer in humans. Within plants, the cells aren’t moving so it can’t affect many other tissues like in animal cells. Furthermore, plants, specifically trees, don’t have any vital organs whereas with humans if cancer reaches an organ such as the Brain or the Liver we will die, however, if cancer reaches a branch the tree can simply grow a new one. In a New York Times article, C. Claiborne Ray states that “Excess plant cell production in the form of galls sometimes benefits future generations of insects” This relationship is not seen in Animals and can really help the wasps as they lay their eggs in the fast-growing tissue. Cancer in plants can almost be seen as helpful to the environment.

Cancer stem cells model

Cancer in humans is vastly different because there is no upside to having cancer as an animal. Cancer in animals is caused by an old cell not dying but instead rapidly multiplying and thus creating an abundance of defective cells that cause things such as tumors and if it were to reach your vital organs you would most likely die. In humans, the only real way to treat cancer so far is to use Chemotherapy. This method of treatment is very basic as it doesn’t distinguish between what fast-growing cells are which and kills any cell that is growing too fast. It is not 100% effective nor is it side effect free. The patient’s hair falls off as hair is very fast-growing and the therapy believes that it is cancer cells so they kill it off.

In conclusion cancer in Humans and Plants are similar at the beginning with things such as how they contract cancer and what exactly happens. However, the effects for plants are severely less than the effects on humans. While plants cancer gives a nice home for wasps to lay eggs as well as simply give the plant a minor bump. Human cancer is a devastating disease that caused the death of millions. Let me know what you think down below!


The Ability to Control Genes with Your Thoughts

A research group led by Martin Fussenegger, a professor of Biotechnology and Bioengineering at the Swiss Federal Institute of Technology, has developed a method by which brainwaves control the creation of proteins from genes. The technology wirelessly transfers brainwaves to a network of genes that allows the human’s thoughts to control the protein synthesis of the genes. The system uses a uses an electroencephalogram (EEG) headset, which records and transmits a human’s brainwaves and sets it to the implant in the gene culture.

A successful experiment of the system included humans controlling gene implants in mice. When activated by brainwaves, the gene implant culture would light up by an installed LED light. The researches used the human protein SEAP as the protein that would be generated in the culture and diffused into the blood stream of the mice. The humans were categorized by their states of mind: “bio-feedback, meditation and concentration”. The concentrating group caused an average release of SEAP. The meditation group released high concentrations of the protein. Finally, the bio-feedback group produced varying degrees of SEAP, as they were able to visually control the production of the protein as they could view the LED light turning on and off during the production process. The LED light emits infrared light, which is neither harmful to human nor mice cells. The system proved successful in its ability to translate brainwaves into gene control and protein production and its potential for harmless integration into the living tissue of humans.

The research group hopes that in the future a thought-controlled implant could help prevent neurological diseases by recognizing certain brainwaves at an early stage of the disease and translating the brainwaves into the production of proteins and other molecules that would work to counteract the disease.

Lights of ideas

Powered by WordPress & Theme by Anders Norén

Skip to toolbar