BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: Breast cancer

Can Deodorant Cause Cancer?

Did you ever think you were harming your health while going through your morning routine? Applying deodorant is a daily practice of many people around the world. However, we often don’t realize what exactly we are applying to our bodies and what chemicals the products we are using are made up of. When was the last time you checked the label to see if there were any potentially harmful elements in something as basic as deodorant? Not often, I presume. But I think we all need to start!

The article from Penn Medicine explores the effects the deodorant can have. Deodorant’s contain chemicals which can be absorbed into the body from applying it onto the skin. The theory people have formed about deodorant is that the toxins from the deodorant will collect in the lymph nodes that will turn healthy cells into cancer cells, especially breast cancer as it located closest to the armpit where the deodorant is applied. The difference between a cancer cell and a healthy cell a cancerous cells is a mutation of its DNA (contains the genetic code for organisms). Nucleic acids are DNA. Nucleic acids consist of nucleotides that are made up of a five carbon sugar, a phosphate group and a nitrogenous base. The mutation of the DNA causes uncontrolled cellular proliferation which can occur due to mutations in genes that control cell death and regular cell growth. Healthy cells carry out their ‘normal’ specialized functions. However, the American Cancer Society has said that there is not enough scientific evidence to back the theory. Aluminum is a big ingredient in deodorant needed to prevent sweating. Our bodies ability to sweat is controlled by our nervous system. But how does deodorant really accomplish what it is supposed to? Essentially, the salts in the aluminum have to break down in order to prevent sweat on the pores. The National Center for Biotechnology information claimed that breast tissue does, indeed, have an increase of aluminum in them with daily use of deodorant.

 Harmful Effects of Aluminum on Kidney’s 

A extreme excess of aluminum in the body can result in bone diseases or dementia. Also, a excess of aluminum can also cause kidney issues with people with pre-existing kidney conditions since aluminum gets filtered out of the body through the kidney’s. For the most part, though, there is not enough aluminum in the sticks for it to do enough damage for people with healthy kidneys.

Other Harmful Chemicals Used In Deodorant

Parabens is another ingredient used in deodorant to prevent bacteria from growing on the deodorant, basically being used as a preservative. Parabens also get absorbed through the skin and function as estrogen. Why exactly are parabens bad for us? A excess of estrogen throughout a lifetime, however, can result in increase breast cancer or even a tumor. The positive is that it is in too little of an amount to really make a difference in our bodies.

Just to be safe, though, I think it is time to go buy some aluminum free deodorant- a quick, easy and convenient solution! Here are some great aluminum free deodorants and here are some natural deodorants to get started on using!

Migrating Cancer Invading the Brain

Glioblastoma tumor Credit: The Armed Forces Institute of Pathology [Public domain]

Recent research has unveiled the ability of cancer cells to invade and take over our brain’s neural network. Three independent studies, Monje, Winkler, and Hanahan have indicated that not only can cancer cells metastasize to parts of the body, including the brain, but once present, they have the uncanny ability to “hijack” our brain and incorporate into our neurons.  The research published in Nature discovered this unusual ability in a certain type of brain cancer called gliomas and in specific aggressive breast cancers that are known to spread to the brain, called Triple Negative Breast Cancer. This accidental discovery was “crazy stuff” according to Winkler, and researchers were not only amazed by their findings, but found it difficult to believe.  The implications of the research hold great promise for treating aggressive forms of cancer in the future.

The  first discovery was made by Winkler’s team and supported by Monje, found that synapses in the tumors themselves, specifically in glioma samples, are a type of cancer that is known to be difficult to treat.   Synapses are usually used for neural cell communication, but the discovery of them in tumor cells was novel.  The synapses seem to play a role in allowing the cancer cells to grow and thrive.  This discovery indicates that cancer’s ability to “weave into the brain’s neural network” explains why these cancers have been so difficult to detect early on and treat successfully.  Rather than disrupting the brain’s functions, the tumor incorporates itself into the brain’s normal functions, becoming a stealthy “hijacker”.

In a third study, Hanahan expanded the results from not only brain cancers but also certain types of aggressive breast cancers that are known to spread to the brain.  They found that certain breast cancer cells actually invade the brain and take on a role similar to neurons.  These triple-negative tumors had the uncanny ability to turn on genes that play a role in signaling between neurons.  They specifically found the cancer cells to have the ability in the brain to create a specialized type of synapse that can take in a large amount of Glutamate, one of our brain’s main neurotransmitters.  Glutamate not only functions as a neurotransmitter, relaying signals between neurons, but also seems to play a role in tumor growth.

Lisa Sevenich, a scientist studying brain cancer, emphasized how hostile the brain’s environment is for cancer cells, and the ability of these glioma cells to survive and even thrive in the brain highlights their adaptability and resilience.  Researchers looking forward hoping that these unusual cancer cells may hold promise for new innovative treatments for cancer in the future.

 

 

 

 

 

Ladies…Put Down the Cheese and Pick up the Yogurt!

Diet has been known to play a key role in breast cancer risk. A study done by Karin B. Michels, professor and chair of the Department of Epidemiology at the Fielding School of Public Health at UCLA, at Medical News Today links a poor pro-inflammatory diet during adolescence, to a greater risk of developing breast cancer. A pro-inflammatory diet consists of foods such as red meats, butter, cheese, etc.  Because breast estrogenic hormones are found in these kinds of foods, researchers hypothesize that these compounds fuel breast cancer cell growth.

Photo taken by “kaboompics”: Karolina Grabowska

A case-control study, comparing breast cancer patients to women unaffected by the disease, by Roswell Park Cancer Institute also shows that there may be an association between types of dairy foods, specifically yogurt and cheese, consumed and breast cancer development.  Susan McCann, Professor of Oncology in the Department of Cancer Prevention and Control at Roswell Park, says “dairy foods are complex mixtures of nutrients and non-nutrient substances that could be negatively and positively associated with breast cancer risk”. 

In the case-control study, scholars examined the association between the types of dairy food consumed among 1,941 women diagnosed with breast cancer between the years 2003-2014. Taking into account factors such as demographics, menopausal status, energy intake, and family history researchers found that women who consumed high amounts of yogurt were found to have a 39% lower risk of cancer development while women who consumed high amounts of cheese, particularly cheddar and cream cheese, had the opposite effect with a 53% increased risk of breast cancer. 

Connecting this case-control study to the study done with Medical News Today the results support the idea that a pro-inflammatory diet may cause a greater risk of developing breast cancer. Cheese is known to be part of the pro-inflammatory diet while yogurt is part of an anti-inflammatory diet.

Although more information is needed to definitely confirm these variables as a cause and effect, the correlation found provides us with more information about the possible causes of cancer. “This study of the differences among women and their consumption of dairy products offers significant new understanding into the potential risk factors associated with breast cancer. While diet is thought to be responsible for 30 percent of all cancers, we hope that further research will help us to more fully understand which food products are most valuable in terms of reducing risk for this disease.” (Senior author Christine Ambrosone: chair of the Department of Cancer Prevention and Control). 

As someone who has seen the impacts of breast cancer first hand, knowing all different correlational factors that may lead to the development of breast cancer is extremely important.

 

Study Shows Link Between Enzyme and Spread of Breast Cancer

4024368125_6cee3d572d_q

 “40,000 women in America will die of breast cancer in 2014.” This is a truly terrifying projection. Breast Cancer is an extremely deadly, and extremely prevalent cancer that affects the lives of millions each year. In my personal experience, I have many friends and family members that have battled against this cancer. So many are affected, and there is still no concrete cure. There is no cure, however, researchers at the University of California, San Diego School of Medicine have identified an enzyme that is closely related to the metastasis of breast cancer cells. This is great news, for it suggests the possibility of further research using this finding to end breast cancer for good. Xuefeng Wu, a lead scientist involved with this research, has stated that the team has been able to “target breast cancer metastasis through a pathway regulated by an enzyme“. This enzyme is called UBC13 and it regulates the activity of a protein called p38.

This p38 protein, when not in use, prevents metastasis. By identifying the enzyme that prevents the use of p38, researchers have come one step closer to preventing the spread of breast cancer in the body, and therefore defeating it. With the use of a lentivirus injected into the mammary tissues of mice, the scientists were able to suppress the functions of both UBC13 and protein p38. The mice grew primary tumors, as was expected, however the primary tumors did not metastasize and spread breast cancer cells throughout the bodies, which means the cancer was stopped from spreading throughout the body. This prohibition of the cancer cells to spread is a major breakthrough in breast cancer research and will without a doubt contribute greatly to the ending of breast cancer.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar