Riding a public train. Traveling on an airplane. Or just shopping in a public mall. These are all ways someone may contract COVID-19 without realizing that a stranger around them is infected. Traveling via public transport can expose you to unwanted germs, especially when travel times exceed 15 minutes resulting in longer exposure to a possible carrier of the virus. According to the CDC, being exposed to someone with COVID-19 for more than 15 mins results in a “Higher Risk” scenario of contracting the virus. According to Johns Hopkins Coronavirus Resource Center, there have been over 600 million cases of COVID-19 across the globe. What if you could detect COVID-19 particles around you and then change your seat accordingly to reduce exposure?

Well, scientists out of Tohoku University have created a battery-less device which can detect COVID-19 particles in the air, causing a signal response on the device telling you of the virus’s presence. The device generates power via “alternative magnetization caused by vibration” which can detect “bending vibration energy” and transmit the detection wirelessly. The scientists first objective was to modify a “0.2mm thick Fe-Co/Ni plate with a rectifier/storage circuit”. This unit can detect substances that adhere to the clad plate through the change in vibration and resonance frequency. The ability to use this device without power as well as the ability to adjust triggers for its response are the key reasons it was chosen. 

The next task for the scientists was to adjust the transmission device to detect type “229E (HCoV-229E)”, one of seven strains of human coronavirus. Coating the clad surface of the plate using targeted proteins, in this case a CD13 protein caused the resonance frequency or vibrations of the device to decrease when exposed to this certain COVID-19 strain. Through repeated tests, they were able to verify that these coated plates could transmit the detection of the type “229E (HCoV-229E)”virus without needing an external power source, “something not capable with current biosensors“.

Proteins stimulating responses in our cells when fighting a virus like COVID-19 occur during the Cell Signaling process that we are studying in AP Biology. Through the process of an Immune Response to a virus, after the virus is broken down inside a macrophage, a MHC2 protein will bring part of that virus to the outside of the macrophage to signal a helper cell. The Helper T Cell then has a protein of its own called a CD4 protein which will pair with the MHC2 protein to identify the shape of the virus. In this part of the Immune response to a virus, we see a protein transferring information to a helper t cell, similarly we see a protein on the surface of these coated clads identify a strain of COVID-19 and then send a signal.

As the scientists continue their research on batteryless biomedical devices, they hope to further “develop our device and see if it applies to other viruses, such as MERS, SARS and COVID-19“.

Print Friendly, PDF & Email