We constantly think of SARS-CoV-2, the virus that causes COVID-19, as a single virus, one enemy that we all need to work together to fight against. However, the reality of the situation is the SARS-CoV-2, like many other viruses, is constantly mutating. Throughout the last year, over 100,000 SARS-CoV-2 genomes have been studied by scientists around the globe. And while when we hear the word mutation, we imagine a major change to how an organism functions, a mutation is just a change in the genome. The changes normally change little to nothing about how the actual virus functions. While the changes are happening all the time since the virus is always replicating, two viruses from anywhere in the world normally only differ by 10 letters in the genome. This means that the virus we called SARS-CoV-2 is not actually one species, but is a quasi-species of several different genetic variants of the original Wuhan-1 genome.

The most notable mutation that has occurred in SARS-CoV-2 swapped a single amino acid in the SARS-CoV-2 spike protein. This caused SARS-CoV-2 to become significantly more infective, but not more severe. It has caused the R0 of the virus, the number of people an infected person will spread to, to go up. This value is a key number in determining how many people will be infected during an outbreak, and what measures must be taken to mitigate the spread. This mutation is now found in 80% of SARS-CoV-2 genomes, making it the most common mutation in every infection.

Glycoproteins are proteins that have an oligosaccharide chain connect to them. They serve a number of purposes in a wide variety of organisms, one of the main ones being the ability to identify cells of the same organism.  The spike protein is a glycoprotein that is found on the phospholipid bilayer of SARS-CoV-2 and it is the main tool utilized in infecting the body. The spike protein is used to bind to host cells, so the bilayers of the virus fuse with the cell, injecting the virus’s genetic material into the cell. This is why a mutation that makes the spike protein more efficient in binding to host cells can be so detrimental to stopping the virus.

In my opinion, I find mutations to be fascinating and terrifying. The idea that the change of one letter in the sequence of 30,000 letters in the SARS-CoV-2 genome can have a drastic effect on how the virus works is awfully daunting. However, SARS-CoV-2 is mutating fairly slowly in comparison to other viruses, and with vaccines rolling out, these mutations start to seem much less scary by the day.


Print Friendly, PDF & Email