BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: #Tcells

T-Cells: A New Fighter Against Cancer?

Cancer is something that most have heard of, and worry about. There are so many different types of cancer, and they are all taken extremely seriously due to it being able to cause more harm if left unattended to. When people think of cures and treatments for cancer, the most common one that is used across many different kinds is chemotherapy. While useful, it is not always effective, and it does not work on every type of cancer. Despite chemotherapy being the leading treatment against cancer, there are talks of a new treatment that may treat all cancer.” 

BBC reported a study done that mentioned that there may be A newly-discovered part of our immune system could be harnessed to treat all cancers.” However, before we look at this new possible treatment, we should first dive into how chemotherapy works. Chemotherapy is the process in which we use drugs to destroy cancer cells. While it can not always completely destroy cancer cells, it still aims to either keep the cancer cells from growing, dividing, and/or making new cells. The drugs in chemotherapy are meant to attack rapidly dividing cells, which is usually what cancer falls under. Despite this seeming all great, there are some drawbacks. Other rapidly dividing cells in our body include the lining of our stomach and hair, which is why some people lose hair and have digestive problems when undergoing chemotherapy. With all this in mind, it is important to note that chemotherapy is not always used for the destruction of cancer, but sometimes to weaken it in order to work as an aid to other treatments. All of this goes to show chemotherapy’s versatility, accessibility, and utility.

Now that we know the traditional treatment to most cancers, chemotherapy, we can look at the potentially new treatment and how well it works and if it is the new best option.

This new study uses our immune system to help treat cancer, whereas chemotherapy uses drugs. These researchers studied how the immune system naturally responded to cancerous tumors. Normally, T-cells are used to fight all kinds of infections, but are not always effective against combating cancer. However, the T-cells that the researchers have discoveredcould attack a wide range of cancers.” They even stated that there’s a chance to treat every patient.” What made this T-cell different is that its receptors, which are what allow normal T-cells to detect certain infections, are able to detect most cancerous cells. Not only could they detect them, but they can kill lung, skin, blood, colon, breast, bone, prostate, ovarian, kidney and cervical cancer cells. This particular T-cell interacts with a molecule called MR1, so they are trying to figure out how to pair these together consistently, reliably, and safely. 

This cancer treatment seems to work during all stages of the cancer cell’s life. Normally, as we learned in bio class, cancer cells are typically created from a gene mutation in either the oncogene or tumor-suppressor genes. These genes normally stop or terminate the soon to be cancer cell, but when mutated they can not do their job properly, thus leading to a cancer cell being created and duplicating unchecked. Once it is at this stage, the T-cells are able to do their work. I think that this is an interesting treatment as it can be used to help treat most stages of cancer, and could potentially be taken pro-actively in order to activate these T-cells in the body, making them always ready to fight off any cancerous cells. I believe that this could make it a safer, and more proactive version of chemotherapy. 

This new cancer treatment might seem promising, but there is no timeline on when a mass-produced reliable treatment using this method will be complete. Despite this, it is important to know that this could hopefully be an option for many in the future, and can hopefully combat and win the worldwide fight against cancer. 

 

Vaccines for Cancer?

We all know that Cancer is a genetic disease that really can’t be cured, but what if we could develop a Vaccine, like one for a virus, that would target the cells around it to target the cancer? That’s what Professor Darrell Irvine at MIT and his students are trying to accomplish. 

Professor Irvine is working on a vaccine that boosts T-Cells, which is a lymphocyte created in the Thymus along with Epithelial cells to boost immune response. The technique is called CAR-T Cell therapy, and it works by boosting anti-tumor T Cell populations, and using these enhanced populations to fight solid tumors. Before Dr. Irvine’s work, the therapy was unable to target any type of cancer that wasn’t Leukemia. The therapy had a difficult time working on solid tumors because they would attach the T cells to an antigen on the surface of B cells, but the immunosuppressive environment created by the tumor would kill the cells before they could reach the tumor.

But, the researchers at MIT decided to give a vaccine to the lymph nodes, which are host to an abundance of immune cells, instead. Dr. Irvine’s hypothesis was that attaching them to the lymph nodes rather than B cells would give them the proper priming cues to prevent them from dying when they reached the tumor, and he was right. To actually get the vaccine to the lymph nodes the researchers used a technique MIT had developed a few years prior where they attach the vaccine to a lipid tail, which would then bond with albumin, a protein found in the bloodstream, and would then get an uber straight to the lymph nodes. In research in mice, the vaccine has been shown to drastically increase T cell response, and two weeks after treatment and being given a booster vaccine the CAR-T cells made up nearly 65% of the T cells found in the mice. This boost in T cell population resulted in complete obliteration of breast, melanoma, and glioblastoma tumors in 60% of mice.

This success rate is unlike any other treatment for Cancer currently available, and since it is given in a vaccine, memory T cells will be able to detect tumors in the future and destroy them before they become dangerous, just like how regular vaccines work. Between the success rate and the fact that the vaccine will be able to destroy future tumors, there is nothing really like this around for Cancer treatment, and I’m very excited to see the possibilities this has. And the fact that something like a vaccine, which is only capable to treat viruses, can possibly help fight against a genetic disease is also very intriguing.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar