BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: #spikeprotein

Why Nearly Every Human on the Planet Has Contracted Covid-19

While some have only heard the term ‘Coronavirus’ starting in 2020, the drama around this type of infectious disease is not new. This type of virus brings on illnesses that you have most likely contracted long before the start of the pandemic in March of 2020. For example, the common cold. But of course, Coronavirus is not responsible for just that– they also bring on SARS (severe acute respiratory syndrome) and MERS (middle eastern respiratory syndrome). With SARS-CoV-2 being the virus that causes COVID-19,  this extremely contagious disease is, in fact, a strain of SARS. 

But if the Coronavirus has been around long before now and there are so many types of it, what makes SARS-CoV-2 special? The answer to this is its relationship with a particular enzyme, ACE-2, whose shape, function and location opens doors right up for COVID-19 to enter and infect our healthy cells. 

While other types of SARS also attached to this enzyme, the ingenious design of the SARS-Cov-2 protruding spike protein is what makes this virus particularly contagious; Throughout the evolution of this virus from other versions of SARS, the shape of their spike protein has become more refined and specific through compaction of its structure to better mimic the shape of the receptor dock of a naturally-occurring enzyme called ACE-2. This mutation allows the virus to strengthen the grip that they can have on human’s cells, making their infection rate much more high and effective. 

The function and location of ACE-2 also practically facilitates the infection of SARS-CoV-2 within us. These enzymes play a critical role in the renin-angiotensin system (infection-fighting system), and while this virus utilizes them as an entrance to the body as a means to infect, it is reducing the function of the very cells that are supposed to be fighting it. Additionally, this suppresses the rest of the functions of our immune system. 

In the human body, one way in which our immune system works is by the release of T lymphocytes, or T-cells, along with macrophages and monocytes to fight off infections. However, with SARS-CoV-2 having already hijacked ACE-2 at the time when T-cell release is activated, the immune system becomes dysfunctional; the three aforementioned immunity cells are released via a positive feedback loop in a much greater magnitude than usual/ than with other illnesses. Lastly, ACE-2 positive cells are present in over 70 types of our bodily cells, and are especially abundant in oral, nasal, and nasopharynx tissues, which are hot spot entrances for this virus (and many others).

With the involvement of just one enzyme within our bodies, SARS-CoV-2 throws all aspects of our immune system into a disarray.  With the many adaptations and evolutions of SARS viruses, infectious diseases such as these are just getting smarter and smarter each time they sweep through the human population.

Coronavirus. SARS-CoV-2

SARS-CoV-2 Spike Protein

How does the Omicron variant of COVID-19 compare to the deadly Delta variant?

With news of the new variant of the COVID-19 virus reaching 16 states here in the US, many are asking: What is this Omicron variant?

The Omicron variant of COVID-19 was first reported to the World Health Organization by the Head of South African Medical Association, Dr. Angelique Coetzee. As of December 6, 2021, there are about 59,000 Americans hospitalized due to said variant.  The Delta variant, more than twice as contagious than previous variants according to the CDC, still continues to be the leading cause of COVID-related hospitalization and deaths today in the US and many other countries. However, medical experts are saying that Omicron has a few different key mutations that make it very likely to outperform Delta. How does this Omicron variant compare to the deadly Delta variant which we’ve been battling this year? Here are the main things you need to know.

Symptoms of the Omicron variant:

  • Fever or chills
  • Cough
  • Shortness of breath or difficulty breathing
  • Fatigue
  • Muscle or body aches
  • Headache
  • New loss of taste or smell
  • Sore throat
  • Congestion or runny nose
  • Nausea or vomiting
  • Diarrhea

Infection and Spread:

So far, people who have been diagnosed with the Omicron variant of SARS-Cov-2 in the US have or had mild symptoms, yet it is said to be much more contagious. Why? The difference in the structure of the spike proteinVariants of COVID-19 have mutations present in the spike protein due to copying errors in our DNA.

File:Omicron.jpg - Wikimedia Commons

Omicron Structure pictured

The Delta variant has 18 mutations in its spike proteins…Omicron has a whopping 43! That is many, many more than Delta. Jeremy Kamil, associate professor of microbiology and immunology at Louisiana State University Health Shreveport, said, “The number of changes blew people’s minds…It’s an exaggeration to say we’re back at square one, but this is not a good development.”

Around 30 countries have detected said variant so far; 19 states in the US have. The high number of mutations it contains does not necessarily mean it’s more dangerous. As previously stated, Omicron patients have thus far exhibited milder symptoms. Dr. Coatzee said that she first discovered Omicron’s appearance as her patients exhibited “unusual symptoms” in comparison to the Delta variant. However, don’t be too scared; experts say our immune systems have grown more equipped to fight the COVID-19 virus.

We still have yet to learn more about Omicron and its nature, infection, etc., as it is very new.

Free COVID-19 Illustrations - Innovative Genomics Institute (IGI)The original COVID-19 virus’s structure is pictured above

With Omicron having more than double the mutations as Delta, the likeliness of transmission/level of contagiousness is quite high–also meaning that the efficacy of our vaccine could be compromised. The Omicron spike protein has similar components that of the Delta, beta, and gamma variants, meaning that the rate of transmissibility is similar. With Omicron having the largest number of mutations, however, transmissibility can be increased more than 2x!

What should you do?

Well, continue to follow the standard COVID-19 measures. Wear a mask, social distance, wash your hands, travel less, and just be careful. These methods have proven time and time again to help. Travel restrictions on the rise can be tough with the holidays coming, but remember that they are only in place for the sake of our safety. It is important to follow these rules as the pandemic is not over.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar