BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: cancer cell

Unlocking the Secrets of Immortality: Bowhead Whales Defy Time and Cancer

When we look into nature, we often find remarkable solutions to some of our most pressing problems. From the camouflage skills of chameleons to the adhesive prowess of geckos, nature constantly astounds us with its ingenuity. Today, we’re diving into the fascinating world of bowhead whales, those majestic giants of the Arctic Ocean, and the incredible superpower hidden within their cells. Their unique DNA repair mechanisms might just be the key to unlocking groundbreaking advancements in cancer treatments for humans. But before we explore this potentially groundbreaking research, I want to share a personal connection to this topic. Whales, in particular, hold a special place in my heart—they are my favorite animals. This article resonates with my love for the ocean and its untapped potential to solve some of our most challenging medical puzzles, all thanks to a stuffed animal whale that was my cherished bedtime buddy!

I’m sure many of you also have a personal connection to the natural world or a favorite animal that has inspired your curiosity. Feel free to share your own stories or connections in the comments!

“Bowhead whales may have a cancer-defying superpower: DNA repair” by Meghan Rosen discusses the extraordinary longevity of bowhead whales, which can live for more than 200 years. Scientists have found that these whales possess a remarkable ability to repair damaged DNA, which could be the key to their cancer resistance.

A bowhead whale breaches off the coast of western Sea of Okhotsk by Olga Shpak, Marine Mammal Council, IEE RAS

The enormous size and large number of cells in the bowhead whale raise the possibility of cell mutations occurring during cell division, which in theory could raise the risk of cancer. A phenomenon known as Peto’s paradox states that large-bodied animals like bowhead whales appear to have robust cancer-prevention mechanisms that have evolved throughout time.

Bowhead whales appear to have a different technique from other huge mammals like elephants, which have additional copies of the tumor-blocking gene TP53 to get rid of damaged cells. Their cells are extremely effective at repairing double-strand DNA breaks, a type of damage that could cause cancer, as opposed to eliminating it. The less accurate DNA repair in other animals is contrasted with the effective repair process in bowhead whales.

It’s intriguing how different species have developed unique strategies to combat cancer. Share your thoughts on the varied approaches in the animal kingdom!

The study conducted by biologist Denis Firsanov and colleagues reveals that bowhead whale cells outperform human, mouse, and cow cells in repairing DNA damage, displaying an exceptionally efficient and accurate DNA repair system. The whales can tolerate more genomic damage because they possess a precise, rapid DNA repair mechanism. Moreover, bowhead whale cells produce higher levels of a DNA repair protein called CIRBP compared to other species studied. When human cells were engineered to produce bulk CIRBP, they exhibited improved DNA repair capabilities. The researchers conclude that the strategy of repairing damaged cells without eliminating them may be essential for the long, cancer-free lifespan of bowhead whales. Yale University cancer biologist Jason Sheltzer, though not involved in the research, finds this preprint fascinating, as it offers a new model for understanding how larger animals avoid cancer, possibly through superior DNA repair capabilities.

Dna-repair-12-638

It is very important to fully understand how animals, such as bowhead whales, defend themselves against cancer because it may one day be possible to develop cancer cures for mankind. The importance of finding nature’s cures for medical problems is highlighted by research on animals with low cancer rates, as these methods could revolutionize human healthcare.
In AP Bio Unit 1 this quarter, I have learned the fundamental importance of cells.  Like we talked about, cells have proteins. In the research, the study identified two specific proteins, CIRBP and RPA2, that play a role in the DNA repair mechanism of bowhead whale cells. These proteins contribute to the efficiency of the repair process.

How have your studies or interests in biology influenced your understanding of topics like DNA repair and cellular mechanisms? Share your insights!

While human cells have their own set of DNA repair proteins, the specific proteins and mechanisms in human cells may differ from those in bowhead whales, potentially leading to variations in repair efficiency. We also talked about the Endomembrane System, including the Golgi apparatus, which is responsible for the processing and transport of molecules within the cell. In the context of the article, efficient intracellular transport of repair proteins and DNA repair products within bowhead whale cells is essential for their cancer resistance. Additionally, lysosomes in the endomembrane system are responsible for cellular waste disposal. In the context of the article, understanding how bowhead whale cells efficiently repair damaged DNA is also linked to the concept of maintaining cellular integrity and reducing the need for cellular degradation and recycling.

Fighting Cancer with CRISPR

For many years the treatment of cancer has remained difficult and uncertain. Though there are many treatment methods such as chemotherapy and bone marrow transplants, these methods are never guaranteed to work. However, a teenage girl named Alyssa diagnosed with T-cell acute lymphoblastic leukemia (T-ALL) has been successfully treated with a new experimental treatment. T-ALL is a type of cancer where cancerous T-cells overpopulate healthy T-cells, leaving the patient susceptible to disease. In this form of cancer, T-cells also mistake each other as threats. CRISPR illustration gif animation 1Due to the nature of this cancer, in order for treatment to be effective, T-cells would have to appear foreign to the patient’s immune system. This is made possible through the gene editing system, CRISPR. For Alyssa’s treatment, doctors utilized and altered donated T-cells. Using CRISPR, the donated T-cells were stripped of CD7 protein, a common T-cell protein, and CD52 protein, a protein recognized by cancer treatment.  Additionally, donated T-cells received a receptor that gave them the ability to target cancerous and healthy T-cells by having the ability to recognize CD7. All of these changes were made through a process called base editing with CRISPR. During base editing, individual letters, or bases, in the T-cells’ DNA code were altered. These minor alterations have the ability to change the nature of the cell. Thanks to this new treatment, Alyssa’s cancer is now undetectable.

 

I found T-ALL cancer and its destructive nature relatable to the way that viruses take over human body cells, however, our adaptive immunity uses antigens to recognize an intruder. T-cells contain specific proteins which make them recognizable to other T-cells, including cancerous ones. T-ALL destroys the body’s own T-cells which is why this specific treatment needed to use altered T-cells that did not contain recognizable proteins. WheT Lymphocyte (16760110354)n the body is infected by a virus, memory T and B cells use antibodies, a little piece of the virus, to remember and recognize the virus if it were to enter the body again. 

 

Can Cancer in Dogs be Predicted?

Cancer in dogs is not an uncommon thing. While unfortunate, about 1 in 4 dogs unexpectedly develop cancer throughout their lifetime. Scientists have recently raised the question of the possibility of predicting when a dog might develop cancer. Veterinary Oncologist and researcher Andi Flory and her team at PetDX (pet-diagnostics firm) began research to find out if certain traits and factors are associated with a dog’s development of cancer.

As an AP Biology Class, we have gained a significant amount of background information on cancer as a result of our studies throughout this unit. Cancer in dogs is very similar to cancer in humans. As we know from class, when a cell becomes cancerous, it divides uncontrollably, and its DNA becomes damaged as a result of some form of mutation (as a result of radiation, high fat, etc.). Unlike a healthy cell, a cancer cell does not stop dividing when it is crowded, and through metastasis, cancer cells travel through the blood system and create tumors. Cancer treatment for both dogs and humans can also be very similar, one major example (similarity) being chemotherapy, a process in which chemicals attempt to kill the fast-spreading cancer cells in a living organism.

Differences in glycolysis pathways between normal cells and cancer cells

After using data and samples from three previous studies, one at University of California- Davis combined with Colorado State University, the second at Ohio State University, and the last at the University of Wisconsin- Madison, Flory and her team concluded their results. They concluded that the median age for cancer development and discovery in dogs was approximately 8.8 years old, with the males being slightly younger than females during cancer diagnosis. They found that neutered and spayed dogs, on average, were diagnosed later than those who have not been “fixed.” With regards to breeds, the study found that West Highland White Terriers and American Staffordshire Terries formed cancer the latest out of all breeds, and Mastiffs and Saint Bernards formed cancer the earliest compared to other breeds. These results may be useful to anyone looking to get or adopt a new dog.

West Highland White Terrier PippaAmericanStafforshireTerrierMastiff - English MastiffGrupp 2 SANKT BERNHARDSHUND, Dein Hards Monday Muffin (24180113462)

As a result of this study, specifically the fact that, on average, the younger ages of cancer diagnosis in dogs was around 7 years old, veterinarians recommend that dog owners begin cancers screening right around the 7 years-old-mark. While there isn’t enough technology yet to detect cancers at very early stages, scientists and veterinarians still say that it is better to begin cancer checkups early rather than later. As a dog owner, I agree with the fact that cancer screenings in dogs should start earlier rather than later. Even though it might be an added expense, if cancer happens to be detected earlier, the dog will begin treatment sooner, and the chance for recovery increases.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar