BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: antibiotic resistance

How “Last-Resort” Antibiotics Kill Bacteria

Polymyxin antibiotics are considered to be “last-resort” antibiotics due to their incredible efficacy, even against otherwise antibiotic-resistant bacteria. However, little was known about exactly how they work – until now. Doxycycline 100mg capsulesResearchers at the University of Basel, Switzerland, have discovered that these antibiotics crystallize the plasma membranes of bacteria.

This crystallization causes the fatty part of a lipopolysaccharide to form a hexagonal structure, which decreases the thickness of the plasma membrane, weakens it, and eventually makes it burst, causing the death of the cell. The lipopolysaccharide normally contributes to the structure and stability of the plasma membrane; if a bacteria is coded without these genes, it will die quickly due to the plasma membrane bursting due to lack of stability. Similarly, the membrane loses much of its structural integrity and collapses when the antibiotic crystallizes it.

This breakthrough is important due to the growing problem of antibiotic resistance: antibiotics are simply less effective than they used to be, as bacteria evolve so that antibiotics no longer kill them. As a result, new antibiotics must be found to maintain efficacy. Now that we know more about why polymyxin antibiotics work, new derivatives can be found to improve public health.

Adapted Bacteria vs AI

In a recent article it has been found out by researchers at Washington State University that it is possible to find antibiotic resistant genes in bacteria with machine learning and game theory.

In the world of health and medicine one of, if not the biggest discovery is antibiotics. They were the most simple way of clearing out or slowing down the reproduction of bacteria in the human body. People a long time ago had been dying left and right to bacterial deseases and antibiotics helped the expectancy of everyone’s lives. However eventually after it started being used bacteria with DNA that has antibiotic resistance survived and reproduced. Eventually it could be problematic as there’s many ways to acquire resistances as said here. With certain bacteria that many people used to be infected with a lot and since people used antibiotics for it certain bacteria had vast resistances as there’s very limited antibiotics to kill one type of disease. If there was a strand of bacteria completely used to antibiotics it could wipe out the human race. If you want to learn more on that it could be found here

 

Although it isn’t too bad and we haven’t run into many bacteria that resist antibiotics, it can also be very dangerous if a person takes an antibiotic that the bacteria in their body is resistant to. The bacteria then wouldn’t die and thy would also expand and live on to reproduce and make the problem worse since it was technically not treated. However with what the people in Washington state university are doing computers would more and more be able to find the bacteria that have genes resistant to certain antibiotics.  The AI would learn more and more what genes are likely to be ones that resist antibiotics and they will be able to apply that to other situations. This method used worldwide would really help people know what type of antibiotics to give sick people. If a strain of bacteria is treated with antibiotics that most of it is resistant to not only could the person die but the existing bacteria in that persons body could be extremely dangerous if it reproduces as said before. So knowing if that bacteria does indeed have a resistance could be pivotal in many peoples lives. This could also happen at new speeds since that is one of the biggest advantages of using AI.

Not only is this new method very fast it is also very efficient. The researches at Washington state had been able to determine this at an accuracy rate ranging from 93% -99%. These constant advancements in health and technology show how the implementation of tech into health has changed life as we know it and will continue to forever.

How Non-Antibiotic Drugs May Affect the Human Microbiome

Scientists at the European Molecular Biology Laboratory (EMBL) in Germany tested 1200 medications on 38 types of gut bacteria to see if some non-antibiotic medications still affect bacteria. 835 of these medications were human-cell-targeting, such as anti-inflammatory drugs and antipsychotic compounds. Testing showed that around one-quarter of the drugs tested affected the growth of gut bacteria. The scientists are still unsure if this means that the drugs are harmful. The inhibition of bacterial growth could contribute to the drugs’ side effects, or even be “part of the drugs’ beneficial action.”

The scientists also found a connection between bacteria that weren’t affected by the medications and antibiotic-resistant bacteria, possibly showing a connection between the use of non-antibiotic drugs and the increase in antibiotic resistance, which is a major issue.

Nevertheless, this study advances how we think about medications and their effects on our microbiome, and helps us to understand our own bodies better.

Image result for antibiotics

Antibiotics

Powered by WordPress & Theme by Anders Norén

Skip to toolbar