BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: Immunotherapy

Is Gut Bacteria the Future of Cancer Treatment?

https://commons.wikimedia.org/w/index.php?search=bacteria+cell&title=Special%3ASearch&profile=default&fulltext=1#/media/File:2_bacteria_cell_division.jpg

Your gut has millions of bacteria in it, but not all bacteria make you sick. The millions of bacteria in your gut are called a microbiota and they help keep you healthy. Just like a fingerprint everyone’s gut microbiota is unique with trillions of bacteria in your gut and over 1,000 different species.The factors that make your gut microbiota different are your age, diet, environment, genetics and medication. The differences in one’s gut microbiota might have a greater significance than originally thought.

Scientists believe that the differences in the gut microbiota are the reason certain cancer patients don’t respond to the new cancer treatments. The new cancer treatment that scientist studied, in relation to the gut microbiota, is immunotherapy, particularly checkpoint inhibition. Immunotherapy aims to rapidly shrink or disappear advanced tumors. While doing this study, Scientists found that certain bacteria, “good” bacteria in the gut, are linked to a patient responding well to the treatment and “bad” bacteria is linked to the unresponsiveness of the immunotherapy.

So what makes a bacteria good or bad ? In this study, the “good” bacteria helps immune cells recognize tumor cells. The “bad“ bacteria interfere with the immune cells functions.

One of the studies to find the “good” and “bad’ bacteria were done on melanoma patients. Scientist had a sample size of 42 patients and took a stool sample prior to giving them the immunotherapy treatment. They found ten types of bacteria in common between the people but each person had a different ratio of those bacterias. Out of those ten they found that eight of the different types of bacteria were more abundantly in people that responded to the treatment (classified as “good” bacteria) and two types of bacteria were more abundant in the people that didn’t respond to the treatment (“bad” bacteria).

In another study done, cancer patients that took an antibiotic after having done the immunotherapy don’t live as long as the cancer patients that didn’t take the antibiotics. As shown bacteria can also be good and even help fight illnesses in our bodies. But the antibiotics that are  being overprescribed are causing issues in our bodies because antibiotics kill harmful bacteria but they also kill the good bacteria.

Engineering Cancer Killers!

https://commons.wikimedia.org/wiki/User:ArturoJuárezFlores

Engineering Cancer Killers!                                                                                               

Today, millions of people are dying from the complex disease, cancer. Although treatments such as chemotherapy and radiation are used to cure the disease, immunotherapy has emerged as a potential cure for cancer. Professor Oliver Ottmann, Head of Haematology at Cardiff University and co-lead of the Cardiff Experimental Cancer Medicine Centre (ECMC), acknowledged the importance of immunotherapy and considers it a huge breakthrough in cancer research and treatment. This lead his team to further discover the key to genetically engineering T-cells to recognize and kill cancer cells. 

How Does It Work?

T-cells are an important part of our immune systems. They contain receptors that can recognize bacterial infections or viruses and help fight them off, and potentially kill cancer cells. Scientists have developed a way to genetically engineer T-cells using CRISPR genome editing. Normally, the genetically engineered T-cells, that are created to fight cancer, contain two types of receptors. One type is called therapeutic, and is created and added on to the cell in a lab, and the other types of receptors are natural and originated from the T-cell.

The Problem 

The team acknowledged that since both kinds of receptors occupy the cell, there is minimal space for all receptors to fit on the cell; therefore certain receptors must challenge other receptors in order to perform their own function. Since there are more natural receptors on a T-cell than the therapeutic receptors,the natural receptors perform superior than the therapeutic receptors. This means the genetically engineered T-cells are not able to work at their full potential; they are unable to kill cancer cells efficiently.

The Solution

After recognizing the problem, Professor Oliver Ottmann and his team genetically engineered T-cells, by genome editing, that only contain the therapeutic receptors they intended on adding. By eliminating all of the natural receptors that T-cells normally have, the therapeutic receptors will increase in efficiency.

The Future

Since scientists have figured out a way to maximize the efficiency of genetically engineered cancer fighting T-cells, finding a cure to cancer could be closer than we thought. Could this cutting edge research be the start of a solution for cancer treatment?  Do you think scientists and society will pursue this theory? This article sparked my interest because finding a reliable cure for cancer has been a problem for many years, every discovery we make brings us closer to finding the best cure.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar