BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: #genomeediting

CAST is in the past, it’s time for HELIX

CRISPR stands for clustered regularly interspaced short palindromic repeats.’ The term references a series of repetitive patterns in the DNA of bacteria discovered in the 90s. 20 years later, Jennifer Doudna and Emmanuelle Charpentier discovered that CRISPR-Cas9 could be used to cut any desired DNA sequence by just providing it with the right template, meaning it could be used as a gene-editing tool. To add a desired DNA sequence, one needs an upgraded version of CRISPR editing called CAST, CRISPR-associated transposases. Unfortunately,  CASTs suboptimally insert more DNA sequences than wanted and have a relatively high rate of unwanted off-target integration at unintended sites in the genome. This leads to mutations, the three being, silent mutations, missense mutations, and nonsense mutations. A silent mutation is an insertion or deletion of a nucleotide that doesn’t change the amino acid sequence. A missense mutation is an insertion or deletion of a nucleotide that changes one or more of the amino acids. Lastly, a nonsense mutation leads to an early stop signal.

4.2. The CRISPR Cas 9 system II

Luckily, new research published in Nature Biotechnology tells the reader that an improved CAST system called HELIX now exists. Helix stands for Homing Endonuclease-assisted Large-sequence Integrating CAST-compleX. This mouthful dramatically increased the efficiency of correct DNA insertions, reducing insertions at unwanted off-target sites. HELIX has over a 46% increase in on-target integration compared to that of the CAST system. This discovery is one of many that will continue to help us understand the complexity of our genes.

Instead of Bringing Back Dinosaurs, These Scientists are Bringing Back the Extinct Christmas Island Rat

Majestic dinosaurs and mammoths on our planet both underwent extinction millions and millions of years ago. The Christmas Island rat? In 1908. De-extinction techniques, also known as resurrection biology, garnered popularity within the science world in the 1990s. The Encyclopedia Britannica defines it as, “the process of resurrecting species that have died out or gone extinct.” Here is how these scientists are attempting to bring back a rat species that you have probably never heard of, and what that can mean for the future.

De-extinction using CRISPR gene-editing

 

File:MaclearsRat-PLoSOne.png - Wikimedia Commons

path of extinction of the Christmas Island rat

The process of de-extinction with the Christmas Island rat is driven by the method of CRISPR gene-editing, which allows for the genome of organisms to be modified, or edited, meaning that an organism’s DNA can be changed by us humans. This allows for genetic material to be added, removed, or modified at specific locations said genome. The idea behind the de-extinction of an animal through CRISPR gene-editing is to take surviving DNA of an extinct species and compare it to the genome of a closely-related modern species, then use CRISPR to edit the modern species’ genome in the places where it differs from the extinct one. The edited cells can then be used to create an embryo implanted in a surrogate host.

CRISPR thought to be “genetic scissors”

Thomas Gilbert, one of the scientists on the team of this project, says old DNA is like a “book that has gone through a shredder”, while the genome of a modern species is like an intact “reference book” that can be used to piece together the fragments of its degraded counterpart.

What is the difference between a genome and a gene?

File:Human genome to genes.png

Gene depicted within genome

Genes, a word you are most likely familiar with, carry the information which determines our traits, or features/characteristics that are passed on to us from our parents. Like chromosomes, genes come in pairs. Each of your parents has two alleles of each of their genes, and each parent passes along just one to make up the genes you have. Genes that are passed on to you determine many of your traits, such as your hair color and skin color. Known dominant traits are dark hair and brown eyes, while known recessive traits are blonde hair and blue or green eyes. If the two alleles that you receive from your parents are the same, you are homozygous for that gene. If the alleles are different, you are heterozygous, but you only express the dominant gene.

Each cell in the human body contains about 25,000 to 35,000 genes, and genes exist in animals and plants as well. Each gene is a small section of DNA within our genomes. That is the link between them, and they are not the same.

Is this possible? Can we really bring back the dead?

Reconstructed image of the extinct woolly mammoth

See, CRISPR gene-editing itself is of great interest for having shown promising results in terms of human disease prevention and treatment for diseases and single-gene disorders such as cystic fibrosishemophilia, and sickle cell disease, and shows promise for more complicated illnesses such as cancer, HIV infection, and mental illness–not so much with de-extinction. Here’s a simple diagram displaying the process.

File:Crispr.png

In this scenario, it is not looking very likely that these rats can come back. Gilbert and his team of 11 other scientists, through extensive processes and attention to small-detail, have in total reconstructed 95% of the Christmas Island rat genome. While 95% may be an A on a test, in regards to genomes, that 5% is crucial. In this case, the missing 5% is linked to the control of smell and immunity, meaning that if we were to bring this animal back, it would lose key functionality. Gilbert says 100% accuracy in genome reconstructing of this species is “never” going to happen.

The success of de-extinction is quite controversial in itself. Restoring extinct species can mean an increase in biodiversity and helping out our ecosystems which are suffering greatly from climate change.  However, research also suggests it can result in biodiversity loss through possibly creating invasive species (yes, I wrote this) or for other reasons.

While the science is interesting, the reality of the unlikeliness of de-extinction becoming a normal and official process is kind of dream-crushing. Who knows, maybe as technology advances, hopefully, we can make all of this happen without harmful side effects, aid our ailing ecosystems, and visit some mammoths on a safari vacation!

Researchers at UT Austin tweak cas9 to make CRISPR gene-editing 4,000x less error-prone

A huge stride in ensuring the efficacy of CRISPR genome-editing has been made by researchers at the University of Texas at Austin. The CRISPR gene editing tool is a new genetic engineering technique that can, by using an enzyme called Cas9, correct problematic genomes in a person’s DNA. It finds the genome that its programmed to and cuts it out of the DNA, leaving the organism without that DNA, and inhibiting the organism from spreading that gene to their offspring. There have been studies have shown CRISPR has been effective in editing genomes that may cause disease. In a study where the Cas9 enzyme was injected into the bloodstream of six people with a rare and fatal condition called transthyretin amyloidosis, those who received the higher dose saw a decline around 87% in production of the misshapen protein that causes this condition.

For many diseases, Gene therapy is the “Holy Grail”. For treatment of Sickle-Cell Anemia, CRISPR has been thought of as a definitive cure. In 2017, it was reported that a 13-year-old boy with HbSS disease had been cured with gene therapy. This treatment also allows the carrier of this gene to reproduce without any risk of their offspring being affected by SCD.

GRNA-Cas9However, there are concerns that when performing the genome editing, the wrong segment of DNA could be targeted by scientists and removed, resulting in potentially drastic consequences. Another concern is that editing out certain genes is societally damaging, as it is considered unnatural to be able to edit the genomes of human bei

ngs. Another major safety concern is mosaicism (when some cells carry the edit but others do not); this could result in many different side effects. Due to the many uncertain aspects around the danger of genome-editing, there has been delay in passing legislation approving genome-editing.

 

In a study published on March 2nd 2022 at the University of Texas at Austin, researchers have found a previously unknown structure in the Cas9 protein that is thought to attribute to these genetic mistakes. When using cryo-electron microscopy to observe the Cas9 protein at work, the researching team noticed a strange finger-like structure that stabilized the off-target gene section to be edited instead of editing the target gene.

The researchers at the University of Texas at Austin were able to tweak the protein, preventing Cas9 from editing the wrong sequence. This change has made the tool 4,000 times less likely to produce unintentional mutations; the team calls the new protein ‘SuperFi-Cas9’.

While other researchers have made similar edits to make the Cas9 protein more accurate in its editing, these often result in slowing down the genome editing process. At UT Austin, the researchers say that SuperFi-Cas9 still is able to make edits at the normal speed.

The researchers plan to test SuperFi-Cas9 further in living cells as opposed to the testing thats been done with DNA in test tubes. Hopefully they’re able to cement the accuracy of SuperFi-Cas9, and that this may accelerate us on our way to implementing CRISPR gene editing in the current medical world. Let us know in the comments below what your thoughts are on CRISPR editing, and if you think we should continue researching it!

CRISPR Gene Editing: The Future of Food?

Biology class has taught me a lot about genes and DNA – I know genes code for certain traits, DNA is the code that makes up genes, and that genes are found on chromosomes. I could even tell two parents, with enough information, the probabilities of different eye colors in their children! However, even with all this information, when I first heard “gene editing technology,” I thought, “parents editing what their children will look like,” and while this may be encapsulated in the CRISPR gene editing technology, it is far from its purpose! So, if you’re like me when I first started my CRISPR research, you have a lot to learn! Let’s dive right in!

CRISPR

Firstly, what is CRISPR Gene Editing? It is a genetic engineering technique that “edits genes by precisely cutting DNA and then letting natural DNA repair processes to take over” (http://www.crisprtx.com/gene-editing/crispr-cas9).  Depending on the cut of DNA, three different genetic edits can occur: if a single cut in the DNA is made, a gene can be inactivated; if two separate DNA sites are cut, the middle part of DNA will be deleted, and the separate cuts will join together; and if the same two separate pieces of DNA are cut, but a DNA template is added, the middle part of DNA that would have been deleted can either be corrected or completely replaced. This technology allows for endless possibilities of advancements, from reducing toxic protein to fighting cancer, due to the countless ways it can be applied. Check out this link for some other incredible ways to apply CRISPR technology!

In this blog post however, we will focus on my favorite topic, food! Just a few months ago, the first CRISPR gene-edited food went on the market! In Japan, Sicilian Rouge tomatoes are now being sold after the Tokyo-based company, Sanatech Seed, edited them to contain an increased amount of y-aminobutyric acid (GABA). “GABA is an amino acid and neurotransmitter that blocks impulses between nerve cells in the brain” (https://www.scientificamerican.com/article/crispr-edited-tomatoes-are-supposed-to-help-you-chill-out/). It supposedly (there is scarce scientific evidence of its role as a health supplement) lowers blood pressure and promotes relaxation. In the past, bioengineers have used CRISPR technology to “develop non-browning mushrooms, drought-tolerant soybeans and a host of other creative traits in plants,” but this is the first time the creation is being sold to consumers on the market (https://www.scientificamerican.com/article/crispr-edited-tomatoes-are-supposed-to-help-you-chill-out/)!

Tomatoes

So, how did Sanatech Seed do it? They took the gene editing approach of disabling a gene with the first method described above, making a single cut in the DNA. By doing so, Sanatech’s researchers inactivated the gene that “encodes calmodulin-binding domain (CaMBD)” in order to increase the “activity of the enzyme glutamic acid decarboxylase, which catalyzes the decarboxylation of glutamate to GABA, thus raising levels of the molecule” (https://www.scientificamerican.com/article/crispr-edited-tomatoes-are-supposed-to-help-you-chill-out/). These may seem like big words, but we know from biology that enzymes speed up reactions and decarboxylation is the removal of carbon dioxide from organic acids so you are already familiar with most of the vocabulary! Essentially, bioengineers made a single cut in DNA inside of the GABA shunt (a metabolic pathway) using CRISPR technology. They were therefore able to disable the gene that encodes the protein CaMBD, and by disabling this gene a certain enzyme (glutamic acid decarboxylase) that helps create GABA from glutamate, was stimulated. Thus, more activity of the enzyme that catalyzes the reaction of glutamate to GABA means more GABA! If you are still a little confused, check out this article to read more about how glutamate becomes GABA which will help you better understand this whole process – I know it can be hard to grasp!

After reading all of this research, I am sure you are wondering if you will soon see more CRISPR-edited food come onto the market! The answer is, it depends on where you are asking from! Bioengineered crops are already hard to sell – many countries have regulations against such food and restrictions about what traits can actually be altered in food. Currently, there are some nutritionally enhanced food on the market like soybeans and canola, and many genetically modified organisms (GMOs), but no other genome-edited ones! The US, Brazil, Argentina, and Australia have “repeatedly ruled that genome-edited crops fall outside of its purview” and “Europe has essentially banned genome-edited foods” (https://www.scientificamerican.com/article/crispr-edited-tomatoes-are-supposed-to-help-you-chill-out/). However, if you are in Japan, where the tomatoes are currently being sold, expect to see many more genome edited foods! I know I am now hoping to take a trip to Japan soon!

Thank you so much for reading! If you have any questions, please ask them below!

Powered by WordPress & Theme by Anders Norén

Skip to toolbar