Have you ever felt sore after a workout? Maybe your muscles ache and you wonder why this is so? This soreness you are feeling is the result of the tearing of muscles fibers in your body. But the muscle repairing process isn’t as simple as “rebuilding muscles fibers.” It is a part of a chain of reactions and processes that our body triggers in perhaps the most fantastic biological response.

After an intense workout, your muscles are covered in microscopic tears. The easiest and most simple explanation for muscle growth is when you tear these fibers, they grow back stronger leading to stronger muscles. However, a newer study found the presence of scars surrounding the torn muscle fibers. I was totally shocked to learn that after we workout, we get mini scars on our muscles and not just fiber tears. As it turns out, bunches of nuclei go to the scars and begin to heal them. They trigger the release of mRNA which reads the DNA to make new proteins. Who knew that nuclei had something to do with the regeneration of muscles. However, the process of re building a torn muscle fiber is much more extensive than nuclei creating new proteins.

When we dive deeper we can see that there are many different levels to this process. The primary area of rupture after a workout are to the skeletal muscles. Skeletal muscles are laid out in sheets and are connected to bones by tendons. This type of muscle is responsible for a process called protein synthesis. When your body is undergoing an exercise, your muscles are constantly fed protein in order for the cells within your muscles to continue functioning properly and at a proper pace. When your workout concludes, it is vital to consume protein since protein stimulates and accelerates muscle repair and growth. For example, I consume a protein filled meal generally very soon after I workout, making sure I am getting the proper nutrients I need to help my muscles strengthen and prosper. The process of protein synthesis is imperative to muscle recovery and stamina, but if we look even closer into the recovery process we can see a couple of cellular organelles performing some impressive things.

According to the new study, two of the most important organelles in animal cells that is necessary for muscle regeneration is the mitochondria and the nuclei. The mitochondria’s function within a cell is to perform cellular respiration. Cellular respiration is the process where sugars are broken up into useful energy that can be used by the cell and eventually by the body. As we learned in biology class, the mitochondria ultimately converts the sugar glucose into ATP (Adenosine Triphosphate). ATP is essential for muscle regeneration post workout and during a workout because it is responsible for muscle contraction and movement. Just recently, we have learned that the nuclei also comes to the rescue for torn muscle fibers. Nuclei will arrive at the tear and then increase production for more myofilaments, the basis of myofibers. Traditionally, myofibers are the building blocks for muscle growth and rejuvenation. These myofilaments are consisted of small proteins that stimulate muscle movements. All in all, the addition of nuclei to the muscle rejuvenation process highlights the amount of energy needed by the body to perform these functions, which comes from the mitochondria and ATP.

Within the skeletal muscles are areas of high activity that consist of two main organelles doing most of the work: nuclei and mitochondria. The traditional forms of muscle rejuvenation with the mitochondria go hand in hand with the newest discovery of nuclei. In order for the muscle to rebuild it needs proteins and ATP. With the help of these two organelles, this accelerated process can successfully go through. The next time you get sore after a workout, take a second and admire that your body is hard at work with a task that is nothing short of mesmerizing.

Muscle Tissue Skeletal Muscle Fibers (41241952644)

Print Friendly, PDF & Email