A group of researchers from MIT recently published their groundbreaking findings on specially engineered proteins that are able to stick to substances both in and out of water. Using naturally occurring adhesives secreted by mussels as a model for their research, the team combined those proteins with biofilms from certain bacteria to create an especially strong and sticky hybrid.

These new adhesives are much more complex than previously engineered proteins. While other scientists used the E. coli bacteria as a template to engineer proteins that resembled the mussel’s protein, leading researcher Timothy Lu¬†described those methods as unable to “capture the complexity of the natural adhesives”. Therefore, the MIT research team uses several types of bacteria to separately manufacture components of different mussel proteins and then combines them with bacterial curli fibers into one complex adhesive.

There are numerous applications of this discovery. Once the team is able to concoct a method of generating the protein in great quantities, it can be used to repair holes in ships as well as to seal wounds after an accident or surgery. One of the team’s subsequent goals is to create “living glues” composed of bacteria that would react to a breach of a material and repair it through secretion of a protein adhesive. The potential of this discovery is demonstrated by the acclaim of the group’s sponsors, which include The Office of Naval Research, the National Science Foundation, and the National Institutes of Health.

 

377207561_2d550d471d_o

Print Friendly, PDF & Email