BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: mars

Can We Genetically Modify Humans to Live on Mars?

CRISPR is a gene-editing technique that modifies the genomes of living organisms. They do this by searching for a strand of DNA and “when the target DNA is found, Cas9 – one of the enzymes produced by the CRISPR system – binds to the DNA and cuts it, shutting the targeted gene off.” CRISPR has been used to cure people of genetic diseases. Crispr

Humans have always dreamed of being able to live freely on another planet other than earth. It has been the topic of many pop culture movies throughout history. However with the use of gene editing theoretically this is possible. In a research paper written in 2016, they state that the main problems of living in other worlds would be radiation. With the use of gene-editing they’ve found that the protein named “Dsup prevented the animal’s DNA from breaking under the stress of radiation and desiccation“. It was also able to block X-ray damage by almost 40%. Lisa Nip a scientist at MIT state that “using genetic editing tools like CRISPR to actually transform our own DNA and make ourselves more able to survive in space.” This relates to our AP Bio class as we learned about genes as well as how the genes shape our traits as human. The idea of changing our genes is incredible as we always believed that it’s just how we were born and our parent’s chromosomes determined how we are, but now with CRISPR gene-editing, they can alter our DNA structure. Then through Mitosis, we are able to multiply our DNA, and eventually, all our genes are the edited version.DNA replication cy

CRISPR is rapidly advancing our research of gene-editing as it is the easiest and most reliable way to review gene-editing meaning that people are able to study it easily. This also means that scientist have easy access to it and are able to run many trials on DNA editing. Finally, there is a moral question to ask. Is it ethical to edit a person’s genes even if it helps them? Should we tamper with our human genetics? These questions aren’t very pressing as of now because we are still in the primary stages of gene-editing, however, some day these are going to be upon us. Thank You For reading let me know what you think about gene-editing down below.

Proof of Life on Mars?

           On November 26th, 2011, NASA launched their Curiosity rover to mars to explore the Gale Crater: a 100 mile wide ancient basin. In a paper published by Nature Geoscience, the authors discuss rocks enriched in mineral salts found by Curiosity. These rocks serve as evidence of briny ponds that went through episodes of overflowing and drying out over the millions of years Mars has existed. The salt deposits in the rocks serve as a watermark for the transition from a wetter Mars to the freezing desert we know today.

         Gale Crater, the area being observed by Curiosity, formed after an ancient massive impact on the surface of mars. Sediment carried by water and wind slowly filled the crater and created a peak known as Mount Sharp. As Curiosity climbs the hill of Mount Sharp it observes the different layers of sediment built up on the slopes which hold clues to the environments of different periods of Martian history. Scientists have noticed a trend from a wet landscape to a drier one as Curiosity continues up the mountain. 

“Understanding when and how the planet’s climate started evolving is a piece of another puzzle: When and how long was Mars capable of supporting microbial life at the surface?” Said lead author William Rapin of Caltech

    With the proof of water once existing on the surface comes the possibility of Mars once harbouring life. With the new evidence being reported by Curiosity it’s obvious that Mars once contained water and has been experiencing a drying period ever since. What were once lakes possibly containing life are now barren craters. Did Mars once support life? Time will tell as Curiosity continues its mission across the red planet.

 

 

1930’s Dust Bowl (MARS EDITION)

 

Mars has experienced dust storms for years now, so a simple one is nothing new; however, by October 29th of this year, the dust storms will be at their all time high according to NASA. The dust storms on Mars are so strong that back in 2007 (the most recent larger one), the storm dimmed the sun, reducing the solar power available to two rovers on different sides of the planet. This continues to be an issue as the storms increase, limiting the power available to the rovers, and leaving them alone. Not only do dust storms threaten rovers, but astronauts too. Future astronauts will have to face tremendous winds, extreme dust, and lack of solar energy like the rovers. Furthermore, research from the past will now to indicate a pattern to predict future storms as the storms have thus far indicated a cycle and with further observation will continue to prove true.

I chose to write about the mars dust storm because besides the fact that I am utterly obsessed with space, the dust storms and the recent water finding on mars bring us closer to finding a planet just like ours, and thusly in the far future a refuge planet in the event of disaster on earth. By creating a history of dust storms we can evaluate the safety and conditions of this planet as we continue to learn about it.

 

 

NASA develops model to predict global dust storms on Mars

 

New Findings Uncover Clues to Mars’ Watery Past

Mars used to have flowing water, a thick atmosphere, and a magnetic field. But now it is only covered with dusty riverbeds and its air is practically a vacuum. Now how did that happen?! In order to uncover what happened to the planet’s lost features, a spacecraft MAVEN was sent out to search for clues. The probe was able to fight through the red planet’s turbulent lower atmosphere and witness a shimmering aurora and solar storm. The data the probe brings back gives scientists a glimpse into Mars’ past and scientists have now presented the mission’s first findings.

6385412387_461af02c0a_z-1

https://www.flickr.com/photos/gsfc/6385412387

https://creativecommons.org/licenses/by/2.0/

Mars was a different planet in a different solar system billions of years ago. Scientists believe the planet was stripped of its water and atmosphere because the sun was much hotter and radiating then. As Dave Brain, atmospheric physicist at the University of Colorado, said, “Imagine you have a pot of water on the stove and that represents the atmosphere. MAVEN is orbiting Mars at a time when the burner is at a low setting. And by looking at the steam, scientists can extrapolate back to a time when the burner is at a low setting.” The probe is jammed with instruments that count charged ions, measure solar wind, scan for ultraviolet energy, detect magnetic fields, and collect dust.

Thus far, the most impressive findings came from watching the effects of essentially a monster solar storm on the planet’s atmosphere. This was highly significant because, as Brain said, “solar storms are really windows to the past. We got to see what happens when a lot of energy hit all at once.” Solar storms can potentially strip away a ton of atmosphere and they are what most likely happened all the time billions of years ago.

One reason the red planet’s atmosphere is so susceptible to solar activity is due to its lack of a strong magnetosphere. When the sun gets riled up and fires dangerous and energized “blobs” at Earth, our planet’s electromagnetic barrier shields the attack and redirects it towards the poles. While traveling along the magnetic lines towards the poles, the solar particles pick up charge, which they release when encountering particles in Earth’s atmosphere, thus emitting light—an aurora.

Scientists were surprised when MAVEN witnessed an aurora on Mars since the planet does not have a magnetosphere. The aurora lasted five Martian days and potentially even enveloped the whole planet. This is a new kind of aurora for scientists as it doesn’t require a magnetic field. Unfortunately the team doesn’t have any noteworthy pictures of the aurora since the probe only caught it on its ultraviolet imager.

There were other impressive findings as well. “Mars has pretty significant topography,” says Stephen Bougher, an atmospheric scientist at the University of Michigan and MAVEN co-investigator. Surface winds bend over features like Olympus Mons, and those disruptions propagate upward into the atmosphere. “Just like a wave coming onshore would crest and break, atmospheric waves crest and break,” says Bougher. But those winds don’t even explain the presence of heavy dust particles high up in the Martian atmosphere. MAVEN collected dirt from more than 600 miles up that defied the dynamics of Martian gravity. “The puzzle is how did that dust get up so high,” says Brain.

These findings aren’t just flashy—they’re scientifically major. They will help scientists understand more about how and why Earth’s atmosphere is so stable, and give interplanetary scientists a better idea of what to expect in future Martian expeditions. “You can figure out what dosage of radiation astronauts would be getting as they set up shop on the surface,” says Bougher. “You don’t want to send astronauts to certain death without exploring the risks.”

Original Article

For more information, check out this article:

https://www.nasa.gov/content/goddard/nasa-video-illustrates-maven-missions-investigation-of-a-lost-mars

And check out this video:

 https://www.youtube.com/watch?v=gX5JCYBZpcg

Is Mars more like Earth than we think?

Photo of Mars (licensing information here)

For a long time, Mars was thought to be inhabitable.  However, there were always “what ifs” and hopes that one day Mars would be identified as a place where humans could survive and live comfortably.  Recently, researchers found recurring slope lineae (RSL) on the Martian slopes of Mars to be caused by a salty liquid.  We all know the most important aspect of life is water, something no one can live without and life on Earth cannot go on without.  So, if water is crucial to life on Earth, wouldn’t that mean that finding water on Mars points towards the potential for life there as well?

Researchers used the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) in four different locations on Mars where RSL were present.  There were signs of hydrated salts in all four locations during the seasons when RSL are largest and most prominent.  RSL range from .5 to 5 meters wide, but have no limit to how expansive they are downslope.  CRISM analyzes Mars at 3:00 p.m., which in Martian time is the hottest time of the day.  This means that any liquid on the surface of Mars would have evaporated during this time, making it virtually impossible for the CRISM to identify water in its liquid form.  However, hydrated salts precipitate from liquid water, meaning that even if there was no water found there at the time the CRISM analyzed that location, there was water there at one point in time.  The salts associated with RSL are perchlorates, which lower the freezing point of water from 0° C (32° F) to -70° C (-94° F)! Researchers believe this points to a larger possibility for the stability of salt water on Mars.

However, even with all this excitement, researchers are still hesitant to make the claim that there are extremely high odds for the ability of life on Mars.  Due to the low water activity of perchlorates, researchers believe it would be hard for any living organism to survive with this as their only water supply.  Head researcher Lujendra Ojha cautions people who are tempted to jump to the conclusion Mars is now considered habitable for humans.  However, people can still hope that one day Mars may offer a second home to human beings, especially with this new exiting find!

 

Main articles:

http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2546.html

http://www.livescience.com/52322-water-flows-on-mars-discovery.html

HUMANS ON MARS!?!?!?!?!?

For many years people have known that there is water on mars, in its solid state at least. Furthermore, Mars’ extremely thin atmosphere has served to preserve the various topographical grooves that prove that there was ONCE liquid water on mars and that it flowed quite freely.

PIA16150_fig1-Mars_Curiosity_Rover-Glenelg_Terrain

What piqued scientists’ interest was the discovery just a few months ago that some of these grooves, the smaller ones usually only 5 meters wide, would appear during Mars’ warm season, grow several hundred meters long, and then disappear when the climate turned cold. Additionally, the streaks often showed up on steep slopes and looked very similar to images of water flowing downhill on Earth’s surface.

Field erosion 01

The anomalous nature of these ephemeral grooves compared to the extremely wide ancient river pattern on Mars’ surface, led researchers to further investigate these sites.

The Mars Reconnaissance Orbiter (MRO) now equipped a new instrument used for the spectroscopic detection of minerals, meaning that it carefully takes pictures of the surface of an object in various wavelengths of light (x-ray, ultraviolet, etc.) in order to reveal higher levels of specific compounds and minerals, was the exact instrument for the job. In this specific case, researchers used the MRO to scan for salt in the unusual streaks.

Why Salt?

I’m glad you asked… Scientists have decided that, based on Mars’ surface samples, any salts on Mars’ surface must be magnesium perchlorate, magnesium chlorate, and/or sodium perchlorate; all of which are minerals that suggest that water could’ve been absorbed into the soil* from the atmosphere, via deliquescence, or from below the surface in an aquifer. When the MRO detected those salts and perchlorates in the streaks it was a definitive “Yes” to the question of, “Is there still LIQUID water on Mars?”

Internal_Structure_of_Pluto

A hypothetical artist’s rendering of how big the aquifer could be on Mars. The Mars rover failed to detect the buried water because it was both extremely deep, and covered by a thick layer of frozen nitrogen.

The significance of liquid water on Mars is that, in the event that human’s travel to Mars, they would be able to begin growing plants. Plants that would not only provide them with food but also the most necessary commodity humans need to survive, oxygen. Plants need four main ingredients to survive: water, sunlight, nutrients from the soil and carbon dioxide. Up until this point, water had been the only missing piece to the puzzle, as Mars’ atmosphere is almost 95% carbon dioxide and is so thin (about 100 times thinner than that of Earth) it obstructs very little solar radiation [sunlight].

Equipped with my Celestron Powerseeker, my family and I took every opportunity we could to look into the depths of space, or at least the depths of our celestial neighborhood. We watched intently as the full lunar eclipse and the blood moon converged overhead. We spectated as the ISS sped across the sky in about 30 minutes on a cloudless night. When I first saw on Yahoo News that NASA had confirmed that there was liquid water on Mars, I was both excited at the new discovery and puzzled as to why everyone was so excited… anyone who has seen a picture of the planet already knew that Mars has water in the form of ice at it poles. Overall, my fascination with space led me to topics such as these. Although hundreds of questions were answered for me, many still remain:

Will NASA attempt to send humans to Mars? If so, when and where can I buy my ticket?

Will further studies find living organisms such as bacteria and protists in these water-streaks?

How big is the aquifer that the streaks could’ve originated from?

Will NASA attempt to establish a colony in Mars? If so, will the first infants born on Mars be considered “Martians”?

*soil being a relative term for the matter on the surface of Mars

http://news.sciencemag.org/space/2015/09/dark-streaks-mars-are-definitely-wet-nasa-says

https://www.nasa.gov/press/2015/march/nasa-research-suggests-mars-once-had-more-water-than-earth-s-arctic-ocean

For Cool Images of Mars’ Water Streaks see

http://finance.yahoo.com/news/jaw-dropping-images-us-first-211104638.html

Martians?!?!?!?

Over the years, as scientists attempt to fathom life on other planets, water has been the focal point of their searchings. Humans can only live about one week with out water, while other animals, such as dogs, can only live about three to four days with out water. Therefore, it is logical for scientists to deduce that for there to be life on other planets, there must also be water.

Recently, a unique “martian meteorite” was found in Northwest Africa. It is the first meteorite found that contains “substantially more water“. Also, it is “in a a class in itself” concerning its chemical make up. Scientists speculate that the “martian crust” came from Mars, as it resembles rocks and soil previously found on Mars. The differences scientists have found between this new meteorite, labeled Northwest Africa 7034, suggests that Mars may be more diverse than expected.

New Martian Meteorite containging record amounts of water.

There is the possiblity that the meteorite was contaminated by water on Earth, though scientist Derek Sears maintains that “it doesn’t look like terrestrial water”.

Either way, Northwest Africa 7034 is an interesting new discovery and has helped to build upon our knowledge of the universe around us. The thought that there are still so many things we have yet to discover is exciting.

 

 

Sources:

main article: http://www.sciencenews.org/view/generic/id/347362/description/New_Martian_meteorite_is_one_of_a_kind

extra articles: http://wiki.answers.com/Q/How_long_can_a_dog_live_without_water

http://www.livestrong.com/article/494958-how-long-can-the-average-human-go-without-water/

photo:

Hubble's Sharpest View of Mars

 

 

Powered by WordPress & Theme by Anders Norén

Skip to toolbar