BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: geneediting

Can We Genetically Modify Humans to Live on Mars?

CRISPR is a gene-editing technique that modifies the genomes of living organisms. They do this by searching for a strand of DNA and “when the target DNA is found, Cas9 – one of the enzymes produced by the CRISPR system – binds to the DNA and cuts it, shutting the targeted gene off.” CRISPR has been used to cure people of genetic diseases. Crispr

Humans have always dreamed of being able to live freely on another planet other than earth. It has been the topic of many pop culture movies throughout history. However with the use of gene editing theoretically this is possible. In a research paper written in 2016, they state that the main problems of living in other worlds would be radiation. With the use of gene-editing they’ve found that the protein named “Dsup prevented the animal’s DNA from breaking under the stress of radiation and desiccation“. It was also able to block X-ray damage by almost 40%. Lisa Nip a scientist at MIT state that “using genetic editing tools like CRISPR to actually transform our own DNA and make ourselves more able to survive in space.” This relates to our AP Bio class as we learned about genes as well as how the genes shape our traits as human. The idea of changing our genes is incredible as we always believed that it’s just how we were born and our parent’s chromosomes determined how we are, but now with CRISPR gene-editing, they can alter our DNA structure. Then through Mitosis, we are able to multiply our DNA, and eventually, all our genes are the edited version.DNA replication cy

CRISPR is rapidly advancing our research of gene-editing as it is the easiest and most reliable way to review gene-editing meaning that people are able to study it easily. This also means that scientist have easy access to it and are able to run many trials on DNA editing. Finally, there is a moral question to ask. Is it ethical to edit a person’s genes even if it helps them? Should we tamper with our human genetics? These questions aren’t very pressing as of now because we are still in the primary stages of gene-editing, however, some day these are going to be upon us. Thank You For reading let me know what you think about gene-editing down below.

Meeting Your Great Great Great… Grandchildren

The MDI Biological Lab along with the Buck Institute of Research on Aging have discovered cell pathways that could increase the human lifespan by 400-500%. “The increase in lifespan would be the equivalent of a human living for 400 or 500 years.” The implications this would have are immense along with some potential drawbacks, but let’s get into the science first.

The research was conducted on C. elegans, a nematode, because “it shares many of its genes with humans and because its short lifespan of only three to four weeks.” The short lifespan allows scientists to quickly see the effects of their efforts to extend the healthy lifespan. The keyword here is “healthy” because prolonging life means nothing unless you can extend the quality as well. The scientists used a double mutant in the insulin signaling and TOR pathways. The alteration in the insulin pathway yields a 100% increase in lifespan and the TOR pathway yields a 30% increase. The incredible discovery though was that when combined the new lifespan was amplified by 500%!! The expected yield was 130%.

Image result for double mutant "

Here depicted is a diagram showing the meaning of a double mutant.

Researchers still say “the discovery in C. elegans of cellular pathways that govern aging, it hasn’t been clear how these pathways interact.” This discovery does lead to the mindset that the important methods of anti-aging are in the interactions between cellular pathways rather than singular pathways. This newly found interaction could also explain why scientists have had trouble discovering “the gene” the governs aging. The combinations of these treatments are described as being similar to the “way that combination therapies are used to treat cancer and HIV.”

It’s odd to picture a world where this treatment could be considered “cosmetic” in a way. Eventually, the human lifespan could expand to hundreds of years with some even living to 1000. The implications that this could have are a current problem we have of overpopulation. It is farfetched, but this would help immensely with the mission to expand into space. The ability to survive with hundreds of years on a potential “colony ship” allows humans to expand to other planets where we would be able to expand greatly. I’ll end with a question: If this treatment was 100% safe and affordable, would you get it? Why or why not?

Genetically Modified Babies?

A decade or two ago, the idea of being able to modify embryos was straight out of a science-fiction movie. However, last November, Chinese scientist He Jiankui genetically modified twin girls’ embryos to have resistance to the HIV virus using a process called CRISPR. His actions have sparked a global panic, as many people feel that current regulations are not enough to keep the scientific community’s actions ethical.

To understand this issue, it is important to understand its individual components. CRISPR is a gene-editing tool that was discovered in 2007 and became widely used in 2013. Essentially, a scientist decides what portion of DNA they would like to alter, and transcribes the sequence into RNA. This RNA finds the portion of DNA with the specific code and then the Cas9 enzyme “cuts” the DNA, allowing a new sequence of DNA to take its place.

The image depicts functions of CRISPR Cas9 technology.

Dr. He used CRISPR Cas9 technology to try to block the HIV pathways in twin girls while they were still embryos. As this experiment was recent, the long-term effects of it are unclear. In addition, as these girls were not developed at the time of their gene editing, they did not give consent to have a treatment that could be detrimental to their health. Furthermore, looking at the Centers for Disease Control website, HIV is primarily acquired by the use of unsafe needles to inject drugs and sexual contact. Using clean needles and condoms can greatly decrease one’s risk of getting HIV, and if a HIV-positive person takes suppression medicines, the viral content of HIV in their blood can become undetectable. Dr. He’s actions gave the twin girls undue risk, with little possible benefit.

In the future, this method of gene editing may be used to prevent or treat genetic diseases, but people have little knowledge of the long-term implications of using this technology on embryos. At the moment, the lack of global legislation regarding this gene-editing technology leaves a lot to be wondered about the future of this tool. According to Victor Dzau who works in the United States National Academy of Medicine, “The silver lining is that the world was awakened by the conduct of Dr. He, and we are all working very, very hard with all good intentions to make sure that this doesn’t happen again—not in the fashion that He did it. And that someday, if and when the technology is ready—and I think all of us are very bullish about this technology—that it will be helping humankind in the right way, knowing the risks and knowing the benefits.” After Dr. He’s experiment, many are in favor of halting the use of CRISPR on human embryos for at least five more years, so more research can be done on the subject. However, legislation, which the world has seen little of, holds a stronger weight than mere recommendations. In Russia, Denis Rebrikov is planning to create CRISPR babies, and regulations in the country regarding his specific goals remain unclear. How will CRISPR embryo editing evolve in the coming decades? Will CRISPR gene editing be as common someday as IVF is today?

 

Powered by WordPress & Theme by Anders Norén

Skip to toolbar