According to The American Cancer Society, scientists can alter the structure of a particular white blood cell known as the T-cell.  This method, known as CAR T-cell therapy, has long been established as a potential weapon against cancer, altering T-cells to best fight cancer based on the patient’s own characteristics.  According to an article in Forbes, the genetic editing procedure that has been used to facilitate this technology has relied upon “Viral Vectors,” which according to Beckman Coulter, viral vectors are modified viruses “that can be used to deliver nucleic acids into the genetic makeup of cells.”  While useful, Forbes asserts that the usage of Viral Vectors can be time-consuming and “can cost up to $50,000 per dose.”  For these reasons, scientists have looked towards a new technology, known as CRISPR technology to facilitate the editing of T-cells.CRISPR logo


According to the National Human Genome Research Institute, “CRISPR (short for “clustered regulatory interspaced short palindromic repeats”) is a technology that research scientists use to selectively modify the DNA of living organisms.”  According to Forbes, this technology differs from viral vector technology in that it involves the synthesis of “RNA guides,” which allow the scientists to break a DNA sequence at a targeted point, allowing for a change, as would be required to facilitate CAR T-cell therapy.  Furthermore, the article asserts that “synthesizing an RNA guide is cheaper and more efficient than cultivating retroviral vectors,” potentially allowing for the treatment to be more widespread.  As stated in the Forbes article by William A. Haseltine, former professor at Harvard University, “there is potential to propel CAR T design forward by integrating contemporary innovations such as CRISPR/Cas9 technology.”  It is therefore clear that the usage of CRISPR technology for CAR T-cell therapy could revolutionize cancer treatment



Many of the concepts referenced in this post involve concepts we have learned in AP bio class.  For example, in the immune system section of the cell communication unit, we learned about the various types of T-cells.  For example, we learned how T-killer cells kill infected cells, such as cancer cells, T-memory cells retain information to prevent further infection, and T-helper cells stimulate other T-cells.  From here, we learned how T-cells, more specifically T-killer cells, can be used to fight cancer, which connects to CAR T-cell therapy’s usage of the cells for gene editing. 


While CRISPR technology’s use in CAR T-cell therapy is exciting, according to Haseltine, it “still has room for improvement.”  This technology is not fully developed, and will probably need years to be widespread.  But still, the complete implementation of CRISPR technology in CAR T-cell therapy remains an exciting prospect.

Print Friendly, PDF & Email