BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: Zebra Fish

How Do Fish Get Their Shape?

Researchers in The National University of Singapore discovered how fish create their chevron pattern. 

The chevron shape itself and the shape’s function in locomotion have been used to infer the evolutionary relationships among chordates. However, the development of the chevron has not been fully researched until now. 

The research team mainly focused on the myotome, a group of muscles forming the spinal nerve root in fish. These muscles make up most of the fish body and help them become more efficient with side-to-side swimming motion. The myotome creates the “V”  pattern, or chevron pattern, in fish, which helps them increase their swimming efficiency. 

One factor that determines the shape of fish is the friction and stress of their muscles. When the myotome first develops in fish, it forms a cuboidal shape before it deforms into a V shape. Dr. Sham Tlili and Professor Timothy Saunders, head researchers of the project, used zebrafish embryos to examine the deformation process of the myotome from a cuboidal to V shape. Developing myotomes in embryos are connected to embryonic tissues, such as the notochord, and each connection has a varying level of friction. The researchers discovered that the sides of the myotome experience more friction than its central side. 

Picture of chevron pattern on fish

The team also revealed that cells of growing myotome become longer as muscle fibers are formed. This elongation incites a force, which is what creates the “V” pattern on fish. 

Professor Peter Wainwright, a biological professor in UC Davis, also determined that patterns of fish could be split into two groups: midwater fish and deep water fish. “As you get down into the water column, when you have more substrate and more complexity in the habitat, you definitely find more variation and elongation,” said Susman, one of Wainwright’s students. 

Professor Saunders, when asked about the results of the experiment, states that  “This work reveals how a carefully balanced interplay between cell morphology and mechanical interactions can drive the emergence of complex shapes during development. We are excited to see if the principles we have revealed are also acting in the shaping of other organs.”

 

Magnets: Fun Toy or Deadly Tool?

Taken by: USCPSC

Cancer is one of the most well known diseases, yet it is one of the hardest to treat. The research of different treatments for cancer is ongoing and innovative. According to a recent study in South Korea magnets may be the next step in cancer treatment. A way for magnets to assist the body in targeting and killing off cancer cells has been discovered and is being researched and developed.

A problem with current cancer treatments like chemotherapy or radiation therapy is that they can only be targeted to a certain extent. With this experimental form of cancer treatment, using magnets, the body’s natural functions are used to kill the cells in a tumor. The human body naturally goes through a process called apoptosis, or the process of programed cell death. Apoptosis is used by the body when it is first developing allowing fingers and toes to grow individually, and it is used daily to kill off skin cells that have been damaged by weather. The researchers in South Korea are using this process to target and kill off the cancer cells.

The researchers applied zinc-doped iron oxide nanoparticles to colon cancer cells. This allows for the cells to naturally bind with antibodies, which then bind to the death receptors on the cancer cells. The researchers then applied a magnetic field, which caused  the death receptors to send out a signal telling the system to attack the cell. When this occurs chemicals are sent out and the cells of the tumor that had zinc-doped iron oxide nanoparticles on them were killed.

Sadly this innovative new cancer fighting technique has its downsides. In their experiments only half the exposed cells were killed although none of the cells they weren’t targeting were harmed. And when this method was tested on zebra fish some grew abnormal tails, which means that this method may be innovative but it still has plenty of testing to go through before it will be used on humans.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar