BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: Worms

Meeting Your Great Great Great… Grandchildren

The MDI Biological Lab along with the Buck Institute of Research on Aging have discovered cell pathways that could increase the human lifespan by 400-500%. “The increase in lifespan would be the equivalent of a human living for 400 or 500 years.” The implications this would have are immense along with some potential drawbacks, but let’s get into the science first.

The research was conducted on C. elegans, a nematode, because “it shares many of its genes with humans and because its short lifespan of only three to four weeks.” The short lifespan allows scientists to quickly see the effects of their efforts to extend the healthy lifespan. The keyword here is “healthy” because prolonging life means nothing unless you can extend the quality as well. The scientists used a double mutant in the insulin signaling and TOR pathways. The alteration in the insulin pathway yields a 100% increase in lifespan and the TOR pathway yields a 30% increase. The incredible discovery though was that when combined the new lifespan was amplified by 500%!! The expected yield was 130%.

Image result for double mutant "

Here depicted is a diagram showing the meaning of a double mutant.

Researchers still say “the discovery in C. elegans of cellular pathways that govern aging, it hasn’t been clear how these pathways interact.” This discovery does lead to the mindset that the important methods of anti-aging are in the interactions between cellular pathways rather than singular pathways. This newly found interaction could also explain why scientists have had trouble discovering “the gene” the governs aging. The combinations of these treatments are described as being similar to the “way that combination therapies are used to treat cancer and HIV.”

It’s odd to picture a world where this treatment could be considered “cosmetic” in a way. Eventually, the human lifespan could expand to hundreds of years with some even living to 1000. The implications that this could have are a current problem we have of overpopulation. It is farfetched, but this would help immensely with the mission to expand into space. The ability to survive with hundreds of years on a potential “colony ship” allows humans to expand to other planets where we would be able to expand greatly. I’ll end with a question: If this treatment was 100% safe and affordable, would you get it? Why or why not?

Discovery in Worms Could Save Human Lives in the Future

A germline is the ancestry of one generation of cells to the next ones. But, scientists for a long time did not know how this has not been destroyed. Over time cell’s proteins become deformed and clump together, and this damage gets passed down to the next generation. So, in theory the germline should have already been destroyed, but it is still producing new and healthy life to this day. The question is: how?

Scientists have recently found the answer to this through studying a tiny worm called Caenorhabditis elegans. Similar to humans, these worms rely on certain genes to control their cellular division. In fact, they have a gene called daf-2 which has the ability to more than double their lifespan. After seeing this gene, scientists have realized that there are genes that are involved in repairing cells so that they do not become deformed or clumped.

Photo Source

Caenorhabditis elegans are hermaphrodites where once eggs are mature they travel to the sperm. But, the eggs have a lot of damaged proteins, only not the ones near the sperm. This led scientists to hypothesize that the sperm send out a signal to tell the egg to get rid of its damaged proteins. This signal triggers the lysosomes in the egg cells to become acidic and break down the clumps.

Even though this discovery was found on worms it could have seriously beneficial implications for humans. Stem cells also use lysosomes to get rid of damaged proteins. So this discovery could lead into learning how to treat diseases, such as Alzheimer’s Disease, to clean their aging tissue. A discovery found by studying tiny worms could lead to the answer to how to cure diseases that come with old age.

“What Does Light Taste Like?” I Don’t Know, Ask A Nematode.

csiro_scienceimage_2818_group_of_nematodes

by Entomology on scienceimage.csiro.au

The vision of light is a beautiful blessing brought to us by our sight receptor cells. Since the sight of light is so great, the taste of it must be even better. Though we don’t know the taste of light, there may be a very tiny someone who does, the nematode. In the article Tasting Light: New type of photoreceptor is 50 times more efficient than the human eye, published on sciencedaily.com, it states that, at the University of Michigan, researchers have discovered a new photoreceptor amidst a bunch of taste receptor cells in nematodes and other invertebrates. This new receptor is called, LITE-1. Because of the receptor’s unusual location, it is believed that these animals have an ability to taste light. New studies have also shown that LITE-1 is no average photoreceptor.

LITR-1 was discovered in nematodes, which are eyeless roundworms only measuring about a millimeter in length. You might be thinking, “Nematodes don’t have eyes. So why would they need photoreceptors?” Shawn Xu, a senior study author who has a lab at University of Michigan Life Sciences Institute, where he is also a faculty member, demonstrated in his lab that even though nematodes are  eyeless, they still move away from flashes of light. The purpose of photoreceptors is to transform light into a signal that is usable for the body. This fact leads scientists to believe that it’s possible for that the roundworm uses this photoreceptor, located among its taste receptors, so that it can convert light into something that the worm can taste in order to perceive it. Xu also says that “LITE-1 actually comes from a family of taste receptor proteins first discovered in insects.”

Though these nematodes are extremely tiny, their peculiar LITE-1 photoreceptors are nothing to be looked over. Something that makes LITE-1 strange is that it has the astounding ability to absorb UVA and UVB light. Another unusual trait of LITE-1 is that it is unlike other photoreceptor proteins. Photoreceptors consist of two parts: a base protein and a chromophore. Breaking these two sections apart does not destroy all of their ability to function. However, LITE-1, when broken apart loses its ability to absorb light entirely.

LITE-1 also has a range possible future uses, such as being applied as a sunscreen that can absorb harmful rays or being used to promote the development light sensitivity in new types of cells. The future of LITE-1 shows great promise  and could open doors for the potential of other animals, besides invertebrates, to have a new and possibly delicious way of sensing light.

 

http://www.cell.com/cell/abstract/S0092-8674(16)31518-5

http://www.natureworldnews.com/articles/32317/20161119/animals-taste-light-new-type-photoreceptor-found-invertebrates.htm

 

 

Fat Worms Show Signs of Biofuel Advancements

 

Image by bramblejungle on Flickr
http://www.flickr.com/photos/bramblejungle/7375513996/

Scientists from Michigan State University appear to have made a significant advancement in biofuel research, at least if some chubby worms are to be believed. The scientists are attempting to use a gene found in Algae involved in oil production to engineer plants that can store oil not just in their seeds but in the stem and leaves also. Biofuel production has typically focused on plant’s seeds because that is where oil occurs naturally, but plants that can be engineered to store oil throughout the entire plant could hold significantly more oil than plants that can’t.

The scientists tested their new plants by using them to feed Caterpillar Larvae. The Caterpillars fed with the oily leaves from the enhanced plants gained more weight than those fed with regular plant leaves. Christopher Benning, a professor of biochemistry and molecular biology at MSU, said “If oil can be extracted from leaves, stems and seeds, the potential energy capacity of plants may double. Further, if algae can be engineered to continuously produce high levels of oil, rather than only when they are under stress, they can become a viable alternative to traditional agricultural crops.”

With these advancements in biofuel production, how much longer do you think it will be until Biofuels finally catch up with Fossil Fuels?

http://www.biologynews.net/archives/2013/02/26/fat_worms_inch_scientists_toward_better_biofuel_production.html

Powered by WordPress & Theme by Anders Norén

Skip to toolbar