BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: snakes

Pythons to Blame for Increase in Dangerous Mosquitoes in Florida

The Invasion of Burmese Pythons in Southern Florida has been well documented over the last few years, and as they increase in number in the Everglades, numbers of many mammals have diminished. The addition of an extra top predator such as the Burmese Python, the second largest snake in the world, growing up to about 19 (19!!!) feet long, has dire implications for the ecosystem of the Everglades and of Florida, but they pose a danger to the humans in the area as well!

That’s right, the Burmese Pythons are causing problems for Floridians. No, Floridians are not soon-to-be victims of a Python takeover, but the disruption of the Everglade ecosystem has begun to become apparent. As Burmese Pythons have lowered numbers of countless different mammals across the Everglades, mosquitoes have less variety among the animals they drink the blood from, per ScienceDaily. As a result, Mosquitoes have been taking more blood from the mammals that remain, most notably the hispid cotton rat. Mosquitoes in the area are now taking more than 75 percent of their meals from this rat, which is a massive 422 percent increase since 1979. Burmese Pythons were first reported in the area in the 1980s. The hispid cotton rat, which so many mosquitoes feed on now, hosts the Everglades Virus, which is transferred to humans by mosquitoes. As if we didn’t have enough reasons to hate mosquitoes. The hispid cotton rat is one of the only hosts for the virus, which causes “fever, headache and even encephalitis” in humans, according to the same ScienceDaily Article.Sigmodon hispidus1.jpg

This new research is not only  relevant because of the increased hatred we all now have for mosquitoes, though. It also represents a landmark in research on invasive species. Nathan Burkett-Cadena informs ScienceDaily that “As far as I am aware, this is the first time that researchers have found that an invasive predator (such as the python) has caused an increase in contact between mosquitoes and hosts of a human pathogen.”

So, python invasions lead to more virus-carrying mosquitoes in the Everglades. Does this make you as uncomfortable as it makes me? Let me know what you think, leave a comment. I for one am glad to be far away from both the pythons and the Everglade mosquitoes.

 

Photos:

James Gathany for CDC https://commons.wikimedia.org/wiki/File:Sigmodon_hispidus1.jpg

Susan Jewell for USFWShttps://en.wikipedia.org/wiki/Burmese_pythons_in_Florida#/media/File:Burmese_python_(6887388927).jpg

 

The Black Mamba an Ally?

As the fangs pierce the skin, passing through the epidermis and into the dermis, you  may notice a feeble prick. Then, you will experience a numbness, similar to the one you get with pins and needles, and it will begin spread throughout your appendages. Within minutes your central nervous system will begin to shut down, leaving you without any hope of survival.  Within a half hour, your body will be overcome by convulsions, paralysis, and eventually you will meet your end by suffocation.

The Black Mamba, due to an assortment of different elements, including its aggressive behavior and its lethal venom, is possibly the deadliest species of snake on the planet. Untreated bites have a mortality rate of 100%. That, to me, is pretty convincing evidence.Recently, scientists have discovered “pain-relieving” compounds, known as peptides, within the venomous cocktail of the Black Mamba. The researchwas led by Sylvie Diochot, of the Institute of Molecular and Cellular Pharmacology at Nice University. She and her team, purified the peptides from the snake’s venom and profiled the compounds’ structure. These peptides are called mambalgins. The researchers were able to test the mambalgins on different strains of mice. The team of researchers concluded that the mambalgins work by blocking, or inhibiting, the ASICs, a set of neurological ion channels associated with pain signaling, in either the central or peripheral neurons. They also discovered that the mambalgins are not toxic, and can have the same, strong effect as morphine. Even better, mambalgins cause a significantly less amount of tolerance than morphine, and generate no risk of respiratory distress and other side effects that are prevalent with “pain-relieving” drugs.The discovery of these mambalgins may prove to be an enormous medical breakthrough. Due to the venom of perhaps the world’s most deadly snake, the insufferable pain of many human beings may be be abolished indefinitely.

 

 

Why use Advil? Just get bitten by a snake…

Traditionally, snakes have not been regarded as friendly animals. In fact, snakes have struggled to gain respect given their track record in poisoning and killing humans. However, a new study has arisen that may help their case…

http://www.public-domain-image.com

The black mamba (shown above), is considered to be one of the most lethal snakes on earth. However, a team of researchers in France discovered compunds in black mamba venom that could actually relieve pain. In fact, when the substance was tested on mice, it’s “pain-killing” effects were comprable to that of morphine!

The compounds are called mambalgins, and the seem to work by blocking certain channels and pathways in nerve cells. Generally speaking, the said channels open up in acidic environments, thus triggering pain signals. The mambalgins work by preventing the flow of charged atoms through the channels, thus stoping the pain killers entirely.

In this study, the analysis of the mambalgins was conducted on mice. The team injected the mice with either the mambalgin or morphine before exposing the animals to “pain” (such as painful chemicals). In the majority of the steps, the venom treatment and the morphine alleviated the pain equally as well. However, because mambalgin happens to cure pain through an entirely different mechanism than morphine, it lacks some of the major side effects of morphine such as nausea or seizure.

As with any new scientific breakthrough or theory, the results are still preliminary. Currently, the performance of mambalgins have only been tested on mice. The researchers are predicting a long while before mambalgins may be of real clinical use as they have to undergo a more rigorous scientific evaluation, not to mention all of the legal hurdles. So don’t go out searching for a snake to bite you just yet! 🙂

I found this article very intriguing and ironic. I found this ironic because the source of this new pain killer is one of the most pain-full animals on the planet. This is also intriguing because scientists may have just stumbled upon the first “pain-less” pain killer, which is ironic in itself as well. On a larger scale, I find this article even more fascinating because it testifies to just how little we know about the environment we live in.

A big hearted snake

Credit: Flickr User Squamata55

For years the scientific community has been fascinated by the phenomena of snakes, such as pythons, eating massive meals at one time and breaking them down slowly over time.  Now thanks to a study by Leslie Leinwand there is an answer to how pythons manage this feat.  After the python eats its organs swell up to two times their size to accommodate this massive amount of digestion.  But what could cause an organ to swell this much?  Leslie and her team have an answer to this as well, fatty acids.  When they drew the snake’s blood after it ate they report that the blood was so filled with fat that it was opaque and it “looked like milk”.  Leslie and her team have not stopped their research here, in fact they learned that when they take three of the fatty acids found in the blood of these pythons and inject them into a living mouse the mouse’s heart will grow just like the pythons did.

This finding lead to another mystery for Leinwand and her team because they are still yet to discover how having large amounts of fat in the blood is harmless to a python while in a human it is incredibly damaging.  In an attempt to get answers Leinwand and her team have injected mice with heart disease with the three fatty acids that lead to heart growth to see if those lipids can have any effects on the condition.  Stay tuned…

Powered by WordPress & Theme by Anders Norén

Skip to toolbar