BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: pandemic

COVID-19 Puts the AGE in TeenAGEr

A new study from Stanford UnBrain 090407iversity suggests that stress from the COVID-19 pandemic may have changed the brains of teenagers, resulting in their brains appearing years older than the brains of pre-pandemic teenagers. The pandemic resulted in increased anxiety and depression among teenagers, but this new research indicates that the effects may not just stop there.

Scientists know that traumatic childhood experiences can accelerate changes in brain structure. Research conducted by Katie McLaughlin, associate professor of Psychology at Harvard University, and her team led to the conclusion that adversity was connected with reduced cortical thickness. This is a sign of brain aging because as people age, their cortices naturally thin. 

Marjorie Mhoon Fair Professor of Psychology Ian Gotlib originally designed a long-term study to research the effects of depression during puberty. He had been conducting brain scans on 220 children, ages 9-13, but he was not able to continue due to COVID-19. After the pandemic, Gotlib resumed his study, and the results were shocking. Researchers discovered that the deveDiversity of youth in Oslo Norwaylopmental process of cortical thinning had been accelerated for the teenagers compared to normal brain development. According to Gotlib, “Compared to adolescents assessed before the pandemic, adolescents assessed after the pandemic shutdowns not only had more severe internalizing mental health problems, but also had reduced cortical thickness, larger hippocampal and amygdala volume, and more advanced brain age.” It remains unclear to scientists whether or not the teenager’s brain age will eventually catch up to its chronological age.

Scientists speculate that the increased anxiety, depression, and overall mental health issues teenagers are experiencing following the pandemic may be linked to cortical thinning. Researchers speculate that cortical thinning may be linked to the expression of certain patterns of genes associated with different psychiatric disorders. Additionally, from studying children who suffered childhood trauma prior to the pandemic, researchers already know that negative childhood experiences can increase the risk of depression, anxiety, addiction, and other mental illnesses. The risk of physical conditions, such as cancer, diabetes, and heart disease, increases as well. 

Jason Chein, professor of psychology and neuroscience and the director of the Temple University Brain Research & Imaging Center, found the research intriguing, but he cautioned against accepting the conclusion that children’s brains definitely aged faster. “It’s pretty interesting that they observed this change,” he said. “But I’m reluctant to then jump to the conclusion that what it signals to us is that somehow we’ve advanced the maturation of the brains of kids.”

 

AP Bio Connection 🙂

I chose this topic because I was interested in the effects of the pandemic on people in my age group. This topic connects to AP Bio because brain aging has been linked to increase stress hormones. The stress hormone corticosteroid activates an intracellular receptor which results in the changed gene expression. Due to the fact that corticosteroids activate intracellular receptors, they must be nonpolar molecules in order to enter the cell membrane. Feel free to comment down below if you enjoyed the article!!

Universal cure for all variants of Covid-19?

Fphar-11-00937-g001

The main issue with COVID-19 since the beginning of the pandemic has always been the various mutations. Someone could get COVID-19 and develop some sort of immunity, but then a new variant would come around and the immunity would be less effective. Scientists at the Pohang University of Science and Technology are working hard to develop a cure for all variants of COVID-19

COVID-19 is a disease caused by the SARS-CoV-2 virus, which is a member of the coronavirus family. In AP Biology, we learned about viruses and how they infect and replicate within host cells. We learned about how COVID-19 is a prime example of how a virus can cause disease in humans. The SARS-CoV-2 virus enters host cells by binding to a receptor called ACE2, which is found on the surface of cells in the respiratory tract and other organs. Once inside the host cell, the virus uses its own enzymes to replicate and produce more copies of itself. This can lead to the death of the host cell and the release of new virus particles, which can then go on to infect other cells. The immune system plays a crucial role in defending the body against viral infections such as COVID-19. When the body is infected with a virus, the immune system recognizes the virus as foreign and mounts an immune response to try to eliminate it. This can include the production of antibodies, the activation of immune cells such as T cells and B cells, and the release of inflammatory molecules.

The reason COVID-19 has been so infectious and is able to mutate so much is because of the ability of the virus to change structure. This structure change increases the strength of its interaction with hACE2 receptors. An hACE2 receptor is the human version of the Angiotensin-converting enzyme 2, the enzyme that serves as the entry point for SARS-CoV-2. As we learned in AP bio, in order for a virus to enter the body, the antigen must bind to a receptor and then travel into the cell. SARS-CoV-2 binds to hACE2. First, the presence of SARS-CoV-2 produces the protein called, IgG. IgG binds to the spike protein on the SARS-CoV-2 cell and that IgG protein binds with the hACE2 receptors in human cells. This binding of IgG is what allows coronavirus to enter human cells.

Understanding this binding process has been key to developing cures for the virus. Most recently, a research team at Pohang University of Science has developed a revolutionary SARS-CoV-2 neutralizer that can adapt to mutations in the virus. This discovery is groundbreaking in the disease prevention world because the type of technology that is used for this specific example can be spread out across the field and used for other viruses. As Professor Seung Soo Oh described: “It is significant that we have developed the world’s first self-evolving neutralizer-developing platform that shows increasingly better performance with the occurrence of viral mutations.” He added, “We plan to develop it into a core technology that can respond to the next-generation pandemic viruses, such as influenza and Hantavirus.”

This neutralizer works by mimicking the interaction between the virus and the receptor, and than once that reaction is mimicked, its protein fragment and nucleic acids can stick to virus, preventing further interaction with the receptor, which eventually prevents the virus from entering the cells.

In all, a neutralizer that adapts with the virus in order to prevent infection and sickness is a groundbreaking discovery that could potentially change the way COVIS-19 (and viruses as a whole) are looked at.

 

There Are More Viruses On Earth Than Stars In The Universe. Why do only some infect us?

Scientists have estimated that there are 10 nonillion (10 to the 31st power) viruses currently on our planet. They are everywhere. Many viruses are beneficial for their host, many inflict no harm, but why do so few viruses affect us and even fewer severely affect us? The short answer: “These pathogens are extraordinarily picky about the cells they infect, and only an infinitesimally small fraction of the viruses that surround us actually pose any threat to humans” says virologist Sara Sawyer.

Understanding how certain viruses affect humans is crucial for protecting and preventing future outbreaks. COVID-19, the most recent outbreak that experienced a “spillover event,” was initially spread through interactions with an animal that is a “non-human primate”. This is called zoonosis. Multiple outbreaks have been introduced this way, but not can be started this way. Pathogens can also enter through cuts, scrapes, mosquitoes, ticks, etc. Once a virus has entered, it needs to find a way to get inside the cells and replicate. To do this, it must first attach to the surface of a host cell and then inject its genetic material (RNA) into the cell. The virus’s genetic material then takes over the machinery of the host cell, using it to replicate itself and produce new viruses. Viruses with a lot of genetic flexibility, and particularly those that encode their genomes as RNA rather than DNA, are well-suited to crossing the species divide. The majority of pathogens that have infected the human population in recent decades have been RNA viruses, including Ebola, SARS, MERS, Zika, several influenza viruses, and SARS-CoV-2. The more lethal viruses were found to have been hiding in their hosts for longer periods of time before showing any symptoms. This would allow it to replicate and spread to new species.

 

Coronavirus. SARS-CoV-2

So the answer is; that a virus has to be incredibly sophisticated for it to cause harm to a human, pandemics are so rare because of precautionary measures such as vaccines, healthcare, and proper sanitation. The continuous study of viruses and their behavior is an important task for the human population and its future as current viruses are continuously mutating and developing with each given day.

 

A New Hope? Promising new research finds a way to treat COVID-19

Despite the recent decline in COVID-19 cases, researchers and public health officials struggle to treat and prevent new cases of the disease.  A 2022 article in the Washington post outlined the recent efforts by researchers to treat and prevent COVID-19, particularly examining monoclonal antibody treatment, a treatment that utilizes human-made antibodies to aid in the Body’s natural response.

However, according to researchers, new mutations are quickly arising which undermine the effectiveness of these treatments, making it difficult for the medical world to keep up with the virus, so biologists are turning to more novel methods.  One Quebec-based company, Sherbrooke, thinks they’ve found the solution, “We saw a sharp decline in viral loads,” says the company’s chief medical officer Bruno Maranda.

Traditional monoclonal antibody treatment has had trouble inhibiting the binding between the spike protein of the virus SARS-CoV-2 and human cells because the binding location of the spike protein is mutating quicker than researchers can adjust antibody treatment.  According to Andrés Finzi, associate professor at the University of Montréal, “there is a huge immune pressure on the virus,” indicating that it will likely continue to mutate in this way.  

 

Novel Coronavirus SARS-CoV-2 Spike Protein (49583626473)

 

 

However, scientists have noticed that certain areas of spike protein have remained rigid as the virus mutates; one such area is the stem helix.  Because of its lack of mutation, scientists believe that this area is essential to SARS-CoV-2 and if disrupted can limit its ability to mutate and cause harm to our bodies.  

Although the new drug from Sherbrooke uses 2 antibodies that attack the spike protein in a more conventional way, the new third antibody attacking the more rigid areas of the protein has proven effective in all trials that have been undertaken.

Another recent paper has also attempted to amend antibody treatment to target more stable sections of the spike protein: the fusion peptide.  According to the chief of the Antibody Biology unit of the National Institute of Allergy and Infectious Diseases, this structure “acts like a grappling hook and inserts into the human cell membrane, pulling the membrane closer to the virus membrane.”  Researchers hope to use these rigid structures to help develop more reliable treatments and preventions for COVID-19.

This system of antibodies protecting our bodies from illness is similar to what we are currently learning in Biology class.  In class, we learned that in the body’s humoral response to pathogens, B-plasma cells secrete antibodies that bind to pathogens, thereby neutralizing them, allowing them to be quickly engulfed by macrophages and destroyed.  Monoclonal antibody treatment leverages this function of antibodies, creating artificial antibodies to facilitate this interaction more strongly.

While these new developments in COVID-19 treatment are exciting, Finzi warned that “we shouldn’t underestimate the capacity of a coronavirus to mutate.”  Other scientists, including Harvard professor of pediatrics Bing Chen, believe that antibody treatment research should not take the place of other disease-fighting tactics; according to Chen “we need much more effective vaccines, for sure.”  But one thing remains true, and that is that SARS-CoV-2 continues to mutate, and will continue to be a serious problem if we fail or adequately treat and prevent it, and while the number of cases is decreasing, it still remains strikingly high for us to write off the disease as harmless.

COVID-19 and Its History Through The Variants

Since 2019 SARS-CoV-2, a positive-sense single-stranded RNA virus has impacted and changed human life. A Johns Hopkins article titled “What is Coronavirus,” states: “A coronavirus identified in 2019, SARS-CoV-2, has caused a pandemic of respiratory illness, called COVID-19.” Coronaviruses cause highly infectious disease, with variants known as SARS-CoV-2, SARS, and MERS. Although COVID-19 only recently sparked conversation – due to the pandemic –  Coronaviruses were identified in the mid-1960s, and even so, it has most likely been around for much longer than that. The first recorded case of COVID-19 spreading in the United States was on January 30th, 2020, and continues to apply to the current day: with 305,082 reported COVID-19 cases in the US this week alone (Day of writing December 1, 2022). Evidently, heavy research has gone into the post-COVID effects it has on adults aged 18 to 64 (although there has been less research done on the younger age groups). But, in current times with the Omicron and Delta variants researchers have begun testing to see if its post-COVID effects are the same or different than the original COVID-19 strand.

SARS-CoV-2 without background

In the original COVID-19 strand there were many different side effects that people encountered: difficulty thinking or concentrating – referred to as brain fog -, headaches, sleep problems, dizziness – when standing up – pins-and-needles feelings, change in smell or taste, and depression or anxiety. In Omicron, individuals had similar post covid complaints – regarding fatigue, cough, heart palpitations, shortness of breath, anxiety/depression. While individuals infected with Delta from 14 to 126 days found that even in acute (14-29 days), sub-acute (30-89 days), and chronic (90 -126 days) found that they were at a lower risk of having post-COVID complaints. The main difference between the original COVID-19 variant and the Delta variant is that the spike proteins have different structures, with the Delta variant infecting lungs more easily – making it the most contagious version of covid. As stated on the government’s site: “SARS-CoV-2 uses its viral membrane fusion protein, known as a spike protein, to bind to angiotensin-converting enzyme 2 (ACE2) as a ‘receptor’…causing severe pneumonia and acute respiratory distress syndrome.” In the immune system, our body’s ability to react and destroy antigens sufficiently depends on a few things. One of them is if the human body has experienced this antigen in the body before it would have made B Memory cells and would be able to fight it off more efficiently. The adaptive immune system response goes through B Cells, Helper T cells, and Cytotoxic T cells which are in charge of encountering, activating, attacking, and remembering this antigen for the potential next time the body faces this virus. Overall, not only do the viruses change but the way they affect the human body changes as well due to the humoral immune response.

 

 

 

Why Nearly Every Human on the Planet Has Contracted Covid-19

While some have only heard the term ‘Coronavirus’ starting in 2020, the drama around this type of infectious disease is not new. This type of virus brings on illnesses that you have most likely contracted long before the start of the pandemic in March of 2020. For example, the common cold. But of course, Coronavirus is not responsible for just that– they also bring on SARS (severe acute respiratory syndrome) and MERS (middle eastern respiratory syndrome). With SARS-CoV-2 being the virus that causes COVID-19,  this extremely contagious disease is, in fact, a strain of SARS. 

But if the Coronavirus has been around long before now and there are so many types of it, what makes SARS-CoV-2 special? The answer to this is its relationship with a particular enzyme, ACE-2, whose shape, function and location opens doors right up for COVID-19 to enter and infect our healthy cells. 

While other types of SARS also attached to this enzyme, the ingenious design of the SARS-Cov-2 protruding spike protein is what makes this virus particularly contagious; Throughout the evolution of this virus from other versions of SARS, the shape of their spike protein has become more refined and specific through compaction of its structure to better mimic the shape of the receptor dock of a naturally-occurring enzyme called ACE-2. This mutation allows the virus to strengthen the grip that they can have on human’s cells, making their infection rate much more high and effective. 

The function and location of ACE-2 also practically facilitates the infection of SARS-CoV-2 within us. These enzymes play a critical role in the renin-angiotensin system (infection-fighting system), and while this virus utilizes them as an entrance to the body as a means to infect, it is reducing the function of the very cells that are supposed to be fighting it. Additionally, this suppresses the rest of the functions of our immune system. 

In the human body, one way in which our immune system works is by the release of T lymphocytes, or T-cells, along with macrophages and monocytes to fight off infections. However, with SARS-CoV-2 having already hijacked ACE-2 at the time when T-cell release is activated, the immune system becomes dysfunctional; the three aforementioned immunity cells are released via a positive feedback loop in a much greater magnitude than usual/ than with other illnesses. Lastly, ACE-2 positive cells are present in over 70 types of our bodily cells, and are especially abundant in oral, nasal, and nasopharynx tissues, which are hot spot entrances for this virus (and many others).

With the involvement of just one enzyme within our bodies, SARS-CoV-2 throws all aspects of our immune system into a disarray.  With the many adaptations and evolutions of SARS viruses, infectious diseases such as these are just getting smarter and smarter each time they sweep through the human population.

Coronavirus. SARS-CoV-2

SARS-CoV-2 Spike Protein

Threat of “Tripledemic” This Year

For the past three years, COVID-19 has been on everyone’s minds. Between the mask-wearing, quarantining, and social distancing performed over this time frame, it is understandable that the spread of other viruses was also curtailed by these measures. However, people are increasingly returning to pre-pandemic activities, and often unmasked – the potential for other viruses to spread rapidly and easily is back.

San Francisco COVID social distancing poster

This winter, influenza is a threat as always – the Centers For Disease Control and Prevention estimate that 2,100-6,200 Americans have already died this year – and fewer Americans have received flu shots this year compared to past pre-pandemic years. but the Respiratory Syncytial Virus (RSV) has the potential to be incredibly deadly this year too.

RSV primarily threatens children and infants, who lack protection with their weaker immune systems. Furthermore, there is currently no vaccine available for RSV. Experts suggest this season to be particularly dangerous because a generation of children have not had frequent exposure to various infections in their lifetime due to the social distancing required by the pandemic, combined with the gradual return of normal activity. When infected, the body’s innate immunity responds. If it fails to stop the virus from spreading, the adaptive immune response begins. Once the infection, in this case RSV, COVID-19, or Influenza are successfully fought off, T-memory cells and B-memory cells continue circulating to prevent serious reinfection. If reinfected, the secondary immune response that occurs will provide better long-term protection.

Children are typically exposed to RSV at least once before the age of two; that number has dropped drastically since the COVID-19 pandemic (not to say that these precautions were not vital and instrumental in controlling the spread of COVID-19). Therefore, they lack this immunity. Unfortunately, there is not much for medical professionals to currently do about this without a vaccine – simply wait for exposure to the virus to rise again. However, the effective vaccines developed for both COVID-19 and Influenza are capable of slowing the spread of both of these viruses – and have been doing so. Through consistent vaccination, we may be able to escape the “tripledemic” experts have been warning of this year.

One Generation’s Trash is Another Generation’s Treasure: How a selected mutation during the Black Death causes dangerous illness today

The Covid-19 pandemic has certainly changed millions of lives forever, but many scientists wonder how the pandemic could affect the human genome.  In a 2022 article in US news, researchers studied the Black Death, the 14th-century pandemic that wiped out nearly 25 million Europeans, and in particular, how it affected our bodies.

According to researchers, the Black Death led our bodies to select for certain genetic traits which at the time decreased their risk of infection.  These specific genes increased the activity of the immune system to better help fight the plague, however, today these mutations are having dangerous consequences.  Researchers have noticed a connection between such genes and the risk of numerous conditions, such as Crohn’s Disease, Lupus, and Rheumatoid Arthritis.  These illnesses are known as Autoimmune Diseases, a class of illnesses that occurs when the body tricks itself into attacking its own cells.

These specific genes increased the activity of the immune system to better help fight the plague, however, today these mutations are having dangerous consequences

According to LibreTexts, this phenomenon occurs when certain pathogens have a very similar molecular structure to the antigens that our bodies produce.  Therefore, our bodies are tricked into attacking their own cells thinking that they are pathogens.  This destroys important structures in our bodies, the absence of which causes illness, such as Crohn’s disease and Rheumatoid Arthritis.

According to Dutch biologist Henrik Poinar of McMaster University, “A hyperactive immune system may have been great in the past.” This hyperactivity may have led to an increase in activity against the plague, which in turn could have increased survival rates.  This groundbreaking research suggests that even the shortest event of monumental importance can forever change our bodies.  As stated by senior researcher Luis Bareirro, “Our genome today is a reflection of our whole evolutionary history.

The obvious question here is: will our current Covid-19 pandemic affect our bodies and are our bodies evolving? Researchers say no.  According to Barreiro, Covid’s low fatality rate makes it unlikely to cause any significant genetic change.   However, Covid’s mutations are difficult to predict, and we have no way of knowing how future mutations will affect our bodies.  Furthermore, in a recent study from Stanford Medical school, researchers identified 1,000 genes linked to severe Covid infection.  It is theoretically possible for these genes to be selected for as we evolve, and it is unclear how that could affect our ancestors.

Covid’s low fatality rate makes it unlikely to cause any significant genetic change

This selection is similar to the selection we are performing on fast-growing flowers in Biology class.  Like the removal of flowers without hairs, certain human genetic traits (probably not hairs) perform more favorably in a pandemic environment and may prevail due to natural selection.

While it is impossible to know what the future will hold, it is interesting to analyze how major historical events, like the Black Death, have affected our bodies.  While there isn’t consensus around how the current pandemic will affect our ancestors, scientists agree that these events are clearly linked to our evolution as a species.  According to Barreiro, “It’s not going to stop. It’s going to keep going for sure.”

Optimus Prime, Megatron, Proteins? The New Transformer Vaccine Candidate!

Amid the global outbreak of COVID-19, with no end in sight after nearly two years, the future wellbeing of humans is in danger. Coughs, fevers, and shortness of breath have lent way to millions of deaths across the globe. As thousands of researchers relentlessly work to find solutions to this virus, multiple vaccine candidates have emerged. Specifically, in the United States, millions of Americans have received doses of the Pfizer-BioNTech, Moderna, and Johnson & Johnson’s Janssen vaccines. However, scientists at Scripps Research recently recognized a new, self-assembling COVID-19 vaccine as a potentially more efficient and effective way to fight this worldwide battle.

 

Primarily, it is critical to understand how vaccines function as they help protect the immune system. The COVID-19 vaccines currently in effect are mRNA-based; in other words, the messenger RNA signals one’s body to produce a harmless viral protein that resembles the structure of a spike protein. The body, with the help of T-Helper cells, recognizes this structure as a foreign invader as B cells bind to and identify the antigen. The T-Helper cells will then signal these B cells to form B-Plasma cells and B-Memory cells. When getting the vaccine, the B-Memory cells are especially important as they prevent reinfection. This is a process known as adaptive immunity. Here, in the event of future infection with the spike-protein COVID-19, the memory cells would help carry out the same response more quickly and efficiently. Essentially, this process acts as the body’s training in case of any future infections.

 

While the Scripps Research COVID-19 vaccine would evoke a similar immune response to that described above, it differs from other candidates in how it assembles in the human body; this new vaccine would be comprised of proteins that are able to self-assemble. On their own, these nanoparticle proteins would transform into a sphere protein structure surrounded by smaller proteins, mimicking the coronavirus’s shape. Here, the self-assembled spike proteins are more sturdy and stable than in an mRNA-produced structure. Thus, it more accurately prepares the body for future infection with COVID-19. In fact, multiple tests found that mice who were given the experimental vaccine were able to fight off not only SARS-CoV-2 but also SARS-CoV1 along with the alpha, beta and gamma variants.

 

Nonetheless, influencing the public to get a newer vaccine instead of the well-trusted vaccines already in production requires proof of the candidate’s benefits. Primarily, as mentioned, early results find that this new candidate would perform well with many different strains of COVID-19. Additionally, researchers assert that this vaccine would be relatively simple to produce on a mass scale. Lastly, scientists found that this vaccine may well be more protective and long-lasting than current vaccine candidates. Although the process of vaccine approval is lengthy and often difficult, I am hopeful for the future of the Scripps Research vaccine if it is put into production. Moreover, I believe that such experimentation with self-assembling nanoparticle proteins transcends the current pandemic. The benefits of this field present a wide array of opportunities, and I look forward to seeing what its future may hold.

 

What do you think? Are these transformer-like self-assembling particles a gateway to the future of medicine or an unnecessary distraction from effective treatments already in circulation?

How does the Omicron variant of COVID-19 compare to the deadly Delta variant?

With news of the new variant of the COVID-19 virus reaching 16 states here in the US, many are asking: What is this Omicron variant?

The Omicron variant of COVID-19 was first reported to the World Health Organization by the Head of South African Medical Association, Dr. Angelique Coetzee. As of December 6, 2021, there are about 59,000 Americans hospitalized due to said variant.  The Delta variant, more than twice as contagious than previous variants according to the CDC, still continues to be the leading cause of COVID-related hospitalization and deaths today in the US and many other countries. However, medical experts are saying that Omicron has a few different key mutations that make it very likely to outperform Delta. How does this Omicron variant compare to the deadly Delta variant which we’ve been battling this year? Here are the main things you need to know.

Symptoms of the Omicron variant:

  • Fever or chills
  • Cough
  • Shortness of breath or difficulty breathing
  • Fatigue
  • Muscle or body aches
  • Headache
  • New loss of taste or smell
  • Sore throat
  • Congestion or runny nose
  • Nausea or vomiting
  • Diarrhea

Infection and Spread:

So far, people who have been diagnosed with the Omicron variant of SARS-Cov-2 in the US have or had mild symptoms, yet it is said to be much more contagious. Why? The difference in the structure of the spike proteinVariants of COVID-19 have mutations present in the spike protein due to copying errors in our DNA.

File:Omicron.jpg - Wikimedia Commons

Omicron Structure pictured

The Delta variant has 18 mutations in its spike proteins…Omicron has a whopping 43! That is many, many more than Delta. Jeremy Kamil, associate professor of microbiology and immunology at Louisiana State University Health Shreveport, said, “The number of changes blew people’s minds…It’s an exaggeration to say we’re back at square one, but this is not a good development.”

Around 30 countries have detected said variant so far; 19 states in the US have. The high number of mutations it contains does not necessarily mean it’s more dangerous. As previously stated, Omicron patients have thus far exhibited milder symptoms. Dr. Coatzee said that she first discovered Omicron’s appearance as her patients exhibited “unusual symptoms” in comparison to the Delta variant. However, don’t be too scared; experts say our immune systems have grown more equipped to fight the COVID-19 virus.

We still have yet to learn more about Omicron and its nature, infection, etc., as it is very new.

Free COVID-19 Illustrations - Innovative Genomics Institute (IGI)The original COVID-19 virus’s structure is pictured above

With Omicron having more than double the mutations as Delta, the likeliness of transmission/level of contagiousness is quite high–also meaning that the efficacy of our vaccine could be compromised. The Omicron spike protein has similar components that of the Delta, beta, and gamma variants, meaning that the rate of transmissibility is similar. With Omicron having the largest number of mutations, however, transmissibility can be increased more than 2x!

What should you do?

Well, continue to follow the standard COVID-19 measures. Wear a mask, social distance, wash your hands, travel less, and just be careful. These methods have proven time and time again to help. Travel restrictions on the rise can be tough with the holidays coming, but remember that they are only in place for the sake of our safety. It is important to follow these rules as the pandemic is not over.

Antibody Concoctions: Possible COVID-19 Prevention and Treatment?

We all have heard the exciting news about Pfizer’s COVID-19 vaccine: a possible savior and source of hope for years to come. According to a LiveScience article by Nicoletta Lanese, “an antibody cocktail designed to prevent and treat COVID-19” entered late-stage trials over the summer. Scientists have been working to find an effective treatment that doesn’t have as many limitations as current findings. A treatment known as convalescent plasma therapy has been circulating clinical trials. It is not FDA-approved and therefore not available to the public. Antibodies are extracted from recovered COVID-19 patients and injected into sick patients in order to boost their immune systems. This method is too unreliable and unpredictable.  The plasma donors all have a variety of antibodies. Some have proven to be effective against the virus by not letting it enter cells in the first place. On the other hand, nothing is guaranteed and a patient could be injected with antibodies that have no effect against the virus. To reduce this risk, drug developers have noted the effective antibodies against SARS-CoV-2 and mass produced them in a lab.

This is a representation of what a spike protein would be under a microscope. The clinical trials are testing to see which antibodies can bind to the spike proteins and prevent them from entering/infecting healthy cells.

Another possible therapy called REGN-COV2 has also entered a late phase in its clinical trial. It supposedly has two antibodies that can prevent the virus from infecting healthy cells by binding to the spike protein. Hopefully the FDA approves the drug at the end of its current phase (phase 3), so short and long-term effects can be monitored. The Co-Founder, President, and Chief Scientific Officer of Regeneron, Dr. George Yancopoulos, released this statement: “We are running simultaneous adaptive trials in order to move as quickly as possible to provide a potential solution to prevent and treat COVID-19 infections, even in the midst of an ongoing global pandemic.” Many other pharmaceutical companies continue with their trials to search for antibody treatments against the SARS-CoV-2 virus. The universal goal is to find a longer-term solution and stop the rising mortality count.

I originally chose the topic of prevention, because I thought it was only going to include mask-wearing and social distancing. It’s incredibly interesting that this article is another scientific take on preventative measures. The article shows how hard scientists and companies are working on developing a treatment. My main intention for this topic was to show how important it is for everyone to partake in the effort to stunt the spread of the pandemic. With recommended safety procedures as well as current trials, I’m optimistic that there will be great progress in our near future. I was able to link this to our AP Biology class, because we recently covered the immune system! The article refers to antibodies, and I know that they are the humoral defenses that go for pathogens. These antibodies are originally secreted from B-Plasma cells in order to bind to and neutralize the pathogens. By using plasma from recovered patients, I assume they are relying on the B-Memory cells to prevent infection/re-infection in other patients.

Please let me know what your thoughts are in the comments! How much longer do you think we’ll have to wait? Do these new updates give you hope about returning to a state of normalcy? I’d love to know.

UPDATE

Since the summer of 2020 (when this article was released), a lot has changed. Regeneron’s antibody cocktail was granted an Emergency Use Authorization in November. While this seemed to be heading the trials towards an optimistic future, that was not the case. Presently, only the Moderna and Pfizer mRNA vaccines are FDA-approved for public use. What happened to REGN-COV2? According to this Washington Post article, 80% of the allocated dosage supply is remaining unused in overcrowded hospitals. There is a common sentiment that resources should not be going towards an “unproven treatment”. The only FDA-approved antibody in the Regeneron cocktail is bamlanivimab. Although we are all eager to return to normalcy, we must be conscious of what is the best for our health.

Protection by Different Face Masks

During the time of the Covid-19 pandemic we know that it is important to wear masks, but which ones? Different masks hold uniqueness, but ultimately are all used to protect you from airborne pathogens, such as viruses and bacteria, that your immune system would need help fighting. 

Although, the best way to prevent contracting Covid-19 is to isolation and social distancing, when in public settings it is important to have a face covering. One of the most common face covers that you will see are surgical masks. Surgical masks  are disposable, loose-fitting face covering that provide a separation between the nose and mouth with harmful particles that may be present in the surrounding air. When used properly, as stated by the FDA in an article named N95 Respirators, Surgical Masks, and Face Masks, “a surgical mask is meant to help block large-particle droplets, splashes, sprays, or splatter that may contain germs (viruses and bacteria), keeping it from reaching your mouth and nose. Surgical masks may also help reduce exposure of your saliva and respiratory secretions to others”. However, surgical masks have flaws, very small particles do not get filtered or blocked that you could be exposed by coughing, sneezing, or medical procedures. They are only designed for one use and can become damaged. As for the SARS-CoV-2 virus, Covid-19, they do not completely block the virus from getting through, rather, reduce the magnitude that can pass through. Also, because of its loose-fitting design, there is a higher risk of harmful particles getting past the mask barrier through the open slots. Ultimately, surgical masks are one model of masks used to protect yourself from harmful particles in the air. 

 

Another type of mask seen throughout the pandemic is an N95 respirator. These face coverings, constructed with many layers of protection, are also used to protect you body from consuming harmful particles, but are designed with a more secure fit and effective filtration system, “that are tested for fluid resistance, filtration efficiency (particulate filtration efficiency and bacterial filtration efficiency, flammability and biocompatibility”.  Many people tend to feel more secure with a N95 respiratory mask because it also accommodates coating technologies to reduce or kill microorganisms. However, people with chronic respiratory, cardiac, or other medical conditions may have a more difficulty breathing with this mask and they are classified as single use to ensure maximum protection.

Lastly, another commonly seen mask are cloth masks. These masks are common due to its easy accessibility and their generally patterned designs. However, as stated by the CDC, these masks do not provide filtration as well as surgical masks or other respirators. Although they provide adequate protection from the virus, they are not permitted to be worn my healthcare workers. Ultimately, in the communal setting cloth face masks allow protection, when worn properly of course, and their protection level can vary depending on material, number of layers, design, etc., but surgical mask and respirators overall considered more protective.

 

Overall, the surgical mask and N95 respirator are two commonly found face covering that will give you protection against the pandemic. It is important to keep in mind that although our immune system provides us with innate immunity, a defense that is active immediately upon infections, and adaptive immunity, an acquired immunity of typically a slow response. Because adaptive immunity is a slower response, for the Covid-19 virus, it is typical to take around two weeks for your body to develop antigens. That being said, masks are a significant precaution against contracting the virus. Lastly, both of these masks are approved by the CDC and are seen in the medical field and in everyday life and can protect you from unwanted pathogens. 

 

 

 

Our Next Steps To Defeat Covid-19.

Introduction

Whether it is protection from an angry bear, a criminal on the loose, the simple flu, or for safe sex, the measures we take to ensure our safety is one of the most important steps to continue to stay healthy and safe. We must continue to educate ourselves on what actions we must take in order to keep ourselves and the people around us as safe as possible.

Recently, our society has had a lot of controversy around products like masks and their effectiveness. Although many of our methods may not guarantee complete safety, we must attempt to reduce the amount of spread of serious viruses like SARS-CoV-2.

To quickly clarify, SARS-CoV-2 is the virus that invades our bodies. When SARS-CoV-2 is able to bypass our bodies’ immune system functions and infect cells in our system, our bodies contract the disease Covid-19. If further information is desired, please refer to this study on SARS-CoV-2 and Covid-19 conducted by the US National Library of Medicine National Institutes of Health.

As we approach a whole year with the presence of Covid-19 in the United States of America, we must stop to reflect on our actions and see what we can do to prevent the virus from wreaking more havoc on our society. One of the most important factors for Covid-19’s ability to spread as much as it had, was the lack of proper protection techniques used by citizens of the United States of America.

Firstly, it is very important to understand how SARS-CoV-2 is able to transfer from person to person so easily. According to the CDC, The most common way for SARS-CoV-2 to spread is through people inhaling respiratory droplets, released through other people’s coughing, sneezing, talking, etc. into their own nose and mouth. Although much rarer, SARS-CoV-2 can sometimes be spread through airborne transmission and contact with contaminated surfaces.

Since breathing is a necessity to continue living, we obviously can’t perfectly avoid inhaling these respiratory droplets, but in what ways can we try to reduce the damage of possible Covid-19 cases in the United States of America…

Forms of Protection

According to the CDC, we can take very specific steps in order to reduce the spread of Covid-19.

To further elaborate on a few of these methods, we as a society must educate ourselves on the best and most efficient way to carry out these actions. One main example at the moment is mask usage in the United States of America. Despite constantly being told, I often see many citizens wearing their masks in ways that are strongly discouraged: some under the nose, some dangling from their ears, and some not on at all. Not only does this put their own bodies at risk of contracting Covid-19, but it also risks the health of others as well.

According to the articleStill Confused About Masks? Here’s the Science Behind How Face Masks Prevent Coronavirus” by Nina Bai, a study conducted by health affairs, compared the Covid-19 growth rate before and after a mask mandate. Nina  states that “the first five days after a mandate, the daily growth rate slowed by 0.9 percentage-points compared to the five days prior to the mandate; at three weeks, the daily growth rate had slowed by 2 percentage-points.” Another study conducted by Christopher Leffler, Edsel Ing and many more professionals also found that out of the 198 countries that they had observed the Covid-19 death rate of “those with cultural norms or government policies favoring mask-wearing had lower death rates.”  Through studies, we can observe the effectiveness of such resources and use these materials such as masks to the best of our abilities to help each other stay safe.

If you are in need of instruction on how to properly use a mask and other small important pieces of information. Please refer to the CDC’s article “How to Select, Wear, and Clean Your Mask”

Another term that many have learned this year, is the term “Social Distancing.” Although staying 6 feet apart from one another like the CDC has told us, it becomes very difficult for every day citizens to abide to this rule as we have a natural tendency to gravitate towards our peers, family and other people in our communities. In order to reduce spreading the virus to other people we must stay socially-distant from others to allow people to live their lives much more comfortably, especially considering that most cases of SARS-CoV-2 transfer are caused through inhaling respiratory droplets.

Another luxury many people don’t use properly is the sinks that are in our homes and bathrooms. I’ve seen way too many people use hand sanitizer instead of going to wash their hands for the recommended 20 seconds with soap and water. For many reasons, this practice can be extremely harmful if someone is trying to prevent the spread of SARS-CoV-2. According to the CDC, there are many cases where using regular hand sanitizer won’t be as efficient as a simple washing of hands with soap and water. For example, hand sanitizer is not as efficient on greasy and dirty hands: hands after handling food, playing sports, going fishing and many other activities that may lead to dirty hands. In cases as such, the CDC recommends using soap and water for 20 seconds. However, we must truly wash our hands by properly scrubbing our hands and not simply allow the water from the sink to run through our fingers and palms. The friction caused by scrubbing allows for the lifting of dirt, grease and microbes on your skin. Microbes are also extremely present under your nails which is why your parents always tell you to make sure to get your nails when you wash your hands. Without properly cleaning our hands and other parts of our bodies, we may accidentally bring harmful substances towards our face, where the virus may be able to easily enter our bodies. By cleaning our hands thoroughly and carefully, we significantly reduce the chances of spreading the virus to others and ourselves.

Biological Implication

The reason the CDC places so much emphasis on thoroughly washing your hands with soap and water, is so that we can make sure to keep our hands clean from any harmful substances. If someone were to only wash their hands with water, they wouldn’t be able to wash off all the non polar substances like grease and oil off of their hands. For this reason, we use soap to and water rather than only water. Due to water’s polar properties, it can only bond with other polar molecules. When one adds soap into their cleansing routine, there are two new parts being tossed into the mix. The hydrophilic heads from the soap attach to the water molecules and the hydrophobic tails of the molecule bond with the non polar substances such as grease and oil. The water then continues to carry the soap and harmful substances away from our hands as other water molecules pull them down with them as gravity takes its course. Soap, being made of lipids, shows versatility as it’s able to bond with both polar and non polar molecules and allows us to fully wash our hands with its polar and non polar qualities.

Conclusion

With proper masks, socially-distant people, clean hands and many other precautions we can make sure that the spread growth is reduced way more than it previously was. Scientists are still trying to figure out all the details themselves. They’re human beings and they’re bound to make mistakes as well, so we must be understanding and flexible when new studies and information prove claims that could help us reduce the spread of SARS-CoV-2 and Covid-19 even more. In these troubling times we must look out for each other and be strong yet malleable as we face hardships that many haven’t ever experienced before.

 

 

 

How Could the Coronavirus Pandemic Harm the Environment?

In light of the chaos of the coronavirus pandemic, the worldwide pandemic caused by SARS-CoV-2, and all of its negative effects, people have been searching for some silver lining to the whole mess. I am someone who is passionate about saving the environment, and I was thrilled to hear about positive environmental outcomes that the pandemic caused. Unfortunately, while rumors have circled around that the environment has benefitted from quarantine, experts are now saying the opposite could soon be true. It is hard to tell what the future will hold, but signs point to a risk of a future with more traffic, pollution, and resulting climate change. 

During April, the prime of stay-at-home orders and when most people were on full lockdown, daily global carbon emissions were down 17% from 2019. However, by June they were only down about 5% from 2019, and at this point many people were still not going about daily life like “normal.” Corinne Le Quéré, professor of climate change at the University of East Anglia in Britain says that “as soon as the restrictions are released, we go right back to where we were.” A somewhat similar situation during the 2007-2008 financial crisis provides some insight into the future. At the time, emissions dropped, but later rose right back up. 

China exhibits an example of a quickly diminished hope of change in their air quality. As they were the first country to shut down, they had a dramatic shift in air quality due to slowed manufacturing and transportation. However, they were also one of the first countries to begin reopening, and this change did not last long. Factories pushed to make up for lost time and the pollution consequently returned, even growing to higher levels than before the pandemic in certain places. Traffic levels have also apparently bounced back to the same magnitude as before the pandemic, despite the fact that there are still people who have not yet returned to regular life and are unaccounted for in this statistic. Furthermore, industries in fossil fuels, plastics, airlines, automobiles, etc. have been negatively impacted by the virus and now are searching for any way they can to make a profit. Governments including the US have complied with their pleas for cash, regulatory rollbacks, and other “special favors.” As a result, “there’s a serious risk that polluters could emerge from this crisis bolder and potentially more profitable than ever,” says Lukas Ross, a senior policy analyst at Friends of the Earth. 

Another devastating example of negative environmental impacts can be seen in Brazil’s Amazon rainforest. During the pandemic illegal loggers, people who harvest, transport, process, buy, or sell timber in violation of national or subnational laws, took advantage of the “smokescreen” provided by the pandemic and caused destruction in the rainforest that surpassed amounts in previous years. According to satellite data, 64% more land was cleared in April 2020 than in April 2019, despite 2019 being a record year for deforestation for the past decade. This is significant because the Amazon rainforest plays a vital role in regulating the world’s oxygen and carbon cycles, producing roughly six percent of the world’s oxygen. As we know from biology class, oxygen is essential as it is one of the main building blocks of life. Our cells need oxygen to produce various proteins, and ultimately more cells. Oxygen is also crucial in many of our body systems. Without oxygen, the creation of carbohydrates, nucleic acids, and lipids would be impossible. The Amazon, which produces a significant amount of oxygen, is being destroyed more and more every year. The rainforest is also considered a carbon sink, meaning it absorbs large amounts of carbon dioxide from the atmosphere, lowering CO2 concentrations. Its function as a carbon sink helps combat CO2 levels in the atmosphere and climate change.

It is unknown what else is in store for the environment in the remainder of the pandemic and in coming years, but we can only hope for the best.

ARE WE DOOMED? Maybe not

     Well, this year has been a ride. Starting off with a potential WWIII, continuing with the tragic loss of hall of fame athlete Kobe Bryant, 2020 has been one roller coaster of a year. But the most bizarre of it all was the COVID-19 pandemic. The pandemic swept the nation way back in March and it still has its grasp on us today. At the time it started, there was very little information on this virus. But now, due to our vast intricate technologies, we were able to find out lots of information on this virus. But, specifically, I want to talk about life after contracting the virus. See, normally when you have a virus and successfully heal from it, you develop antibodies so you will not get this type of virus again. The case is a bit different for COVID-19, or it might be the same. Read to find out!

     This topic is very interesting because there have been more than 10 million people who have acquired the virus. The people that have successfully recovered from the virus want to know the main question: Will I be able to get this virus again? The answer isn’t so simple. Early on the data provided to us gave us hope that the immunity to this virus was possible, but numerous cases also suggest that this immunity to the virus is brief (on a larger scale). Nothing is definite as of now, there is more research to be done, but for now we remain hopeful. 

 

So why do we say the immunity to the virus is brief?

     We know there is hope because there is proof that people who have contracted COVID-19 produce antibodies that protect our immune system, but this production of antibodies lasts maybe 3 to 4 months based on the data provided. The length of time still remains unclear. 

 

So how does this actually work?

     Researchers from Massachusetts General Hospital tested three types of antibodies in blood samples: immunoglobulin G (IgG), immunoglobulin A (IgA), and immunoglobulin B (IgB). Immunoglobulin is a large Y-shaped protein used in the immune system to detect foreign invaders in the blood such as viruses. These proteins bind to these foreign invaders in order to fight them off. We learned from our unit with proteins that antibodies are a form of proteins that can influence the life of a molecule/virus. The most important of all the immunoglobulins stated above is IgG. The reason is because IgG has the potential to sustain immunity in the body. This is because when all three of these antibodies were found in the blood after being infected by COVID-19, IgA and IgB were obliterated by the spike protein found in COVID-19. But, IgG lasted in the stream for up to four months! Now, the researchers could not test IgG for that long, but the four months that they could observe showed that these IgG antibodies do persist to beat the virus! A more long term study is definitely needed. This study is also confirmed by another research group from the University of Toronto. This group also showed how IgA and IgB levels dropped rapidly about 12 days after infection while IgG levels remained steady. 

 

So can you get COVID more than once?

     Although it is very rare, there have been some cases where people contracted the virus more than once. But, there is no evidence that suggests that immunity is or is not possible. All in all, evidence shows that immunity after acquiring the virus is generally protective and the persistence of the IgG antibody provides hope for immunity to the virus. – Ghohesion

So we beat SARS and MERS… Why haven’t we beat COVID-19?

Many people, especially those who were alive during the SARS and MERS outbreak, may be wondering why we haven’t beat the Coronavirus yet if we beat the SARS and MERS outbreaks, two very similar viruses to COVID-19 or Sars-CoV2. This is a question many people have been facing everyday as the Coronavirus disease has caused a shift in the entire globe’s day to day life unlike SARS and MERS. 

SARS, MERS, and COVID-19 are all part of the coronavirus family. “Coronaviruses are a large family of enveloped RNA viruses” that can be found in a variety of bat and bird species. While this makes the three viruses similar, they all have specific differences causing unique results in terms of outbreaks and how the specific viruses have spread. What is so powerful or different about the coronavirus causing COVID? 

First of all, let’s talk about how viruses hijack our bodies. Viruses are microscopic parasites, much smaller than bacteria, that contain key elements that make up all living things such as nucleic acids and DNA or RNA, but are unable to replicate and access this information encoded in their nucleic acids, meaning they cannot self replicate. In order to reproduce, they rely on the genetic material of host cells (our own cells). As we talked about in class, viruses are able to bind to our cell surface receptors and trick our cells to “let them in”. The viruses are then able to hijack our cells by releasing their genomes, or that information they couldn’t previously access, resulting in our cell making millions of copies of that genome to spread throughout the body in order to infect other cells and / or other human hosts. This is how all three of the coronaviruses hijacked our bodies and communities. Let’s hear what happened once this step occured.

SARS stands for Severe Acute Respiratory Syndrome. The SARS outbreak began in the Guangdong province in China in 2002. The coronavirus that caused SARS, called SARS-CoV, was likely spread to humans, in the China wet markets, from civets or other animals who acquired the virus from horseshoe bats. The World Health Organization (WHO) issued a global alert after identifying an atypical pneumonia spreading amongst hospital staff and later names the virus SARS based on the symptoms people began to express. The epidemic was controlled on July 5th 2003 and only four cases have been reported since, 3 of which being in a lab setting dealing with the specific coronavirus. The reason why SARS was able to be contained so quickly was due to the fact that one could only spread the virus if he/she had symptoms and if one expressed symptoms it was easy to self isolate, therefore not spreading the virus to others. In addition, SARS has a fatality rate of 9.6% meaning a good number of people who contracted SARS were likely to pass on and therefore not pass on the virus to others. 

MERS stands for Middle Eastern Respiratory Syndrome. As we learned in class, viruses are no longer named by their place of origin, but this was not the case in 2012 during the outbreak of MERS. Similar to SARS, MERS is a zoonotic virus, meaning MERS was passed from an animal, in this case a camel who contracted the virus from bat once again, to humans in Saudi Arabia. Although 27 countries have reported cases of MERS since 2012, transmission among people is rare and MERS has a fatality rate of 34.3%, making it even more deadly than SARS and therefore making it even harder to spread. 

The first case of COVID-19 or SARS-CoV-2 was reported in Wuhan China in December 2019. By the end of January 2020 the WHO had declared a public health emergency of international concern and by the beginning of February the WHO had declared a pandemic. So what makes the coronavirus disease so much worse than the other ones? How did COVID-19 spread so quickly and to the entire globe? And why are our daily lives changed forever or at least until we can get a handle on the virus?

First of all, the COVID-19 causing coronavirus SARS-CoV-2 is very similar to SARS-CoV, but with very unique and important differences. What we have all learned about SARS-CoV-2 is that you don’t need to be experiencing symptoms to transmit the virus. This is very different from SARS-CoV where you needed to have symptoms in order to transmit the virus. Also, while the transmission rates are lower for MERS and SARS because the fatality rates are higher, in the case of COVID-19, the fatality rate is approximately 1-3%, meaning more people are surviving COVID-19 making it easier for this virus to survive and pass on to other people that it has yet to infect. In addition, as we talked about in class, we have evidence that “viruses can naturally mutate to mimic host biology so as to ensure successful viral propagation” and as a result “a host of high frequency mutations have resulted in a least 5 differentiated SARS-CoV-2 strains to date” making it even harder to develop a successful vaccine to target and eliminate the coronavirus disease.   

So, will we ever be able to put a stop to the spread of the coronavirus disease and therefore the pandemic? The answer is yes, but we first need to figure out how to stop the spread of the virus. The truth about COVID-19 is that unfortunately, as stated above, it is much easier to transmit than SARS and MERS, and COVID-19 has been able to get on planes and travel the world unlike the previous coronaviruses. While it is easier to transmit it is also more survivable than the other coronaviruses that have impacted our communities thus far.

Intentionally making the flu deadlier?

In a recent New York Times article, research has been put into actually genetically enhancing viruses, specifically avian flu, to become more lethal by increaing its transmission. This might sound crazy but the scientists argue that being able to produce a more lethal virus will enable the scientists to come up with a better way of preventing a future epidemic. Other people are afraid that the enhanced viruses could accidentaly get out of the laboratory or be stolen by terrorists to cause an epidemic. Whatever the argument is, it is important for scientists to be able to better understand viruses and their ability to become a pandemic or not. From what scientists know already, the main factors for a virus to be lethal are how the virus is transmitted, what cells the virus affects, and where it enters the body.

Two seperate groups have been working on the avian flu virus, a group at Erasmus Medical Center in Rotterdam and the other at the University of Wisconsin. Dr. Ron Flouchier led the team at the lab in Rotterdam and they were able to modify the virus to transmit through the air for short distances to infect other animals, in this case ferrets because the flu behaves similarly to ferrets as it does to humans. Although they have begun to find ways to make the virus more transmissable, the number of modifications to the temperature the flu can withstand, the location where the virus attacks, and other factors to make the virus actually be threatening to humans is large. The avian flu has only infected 600 people since its discovery in 1997 and even though more than half of them died the chances of people actaully getting the flu is very low and there are vaccines for the flu.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar