BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: non-coding regions

Playing God: New Technology Gives Scientists the Ability to Delete DNA

Since the relatively recent discovery of CRISPR-Cas9, scientists have explored multiple uses of this new technology, from eliminating a patient’s cancer to making super plants, furthering our understanding of DNA and how it works. CRISPR-Cas9 has become the most advanced and efficient gene-editing tool there is. However, thus far, its use has been largely limited to silencing protein-coding genes in the DNA. This leaves out what’s called the DNA “dark matter” — the non-coding DNA that covers about 99 percent of our genetic code. That’s about to change; this article from Futurism explains how a recent study from PLOS Computational Biology is creating a new technique, based on CRISPR, but delving deeper into this unexplored territory.

This brand-new software technology called CRISPETa evolved from a breakthrough tool (which uses CRISPR-Cas9) called DECKO. DECKO was designed for deleting pieces of non-coding DNA using two sgRNAs as molecular scissors. While the concept might seem simple, designing deletion experiments using DECKO was time-consuming due to the lack of software to create the required sgRNAs.

This is where the new tool, CRISPETa, comes in. According to the report, users can tell CRISPETa which region of DNA they wish to delete. The software then generates a pair of optimized sgRNAs that can be used directly for that experiment. Pulido, leader of the research team, stated that “We hope that this new software tool will allow the greatest possible number of researchers to harness the power of CRISPR deletion in their research.”

The software has already demonstrated its efficiency in deleting desired targets in human cells. The research team hopes that its use will go beyond a basic research tool, and be utilized as “a powerful therapeutic to reverse disease-causing mutations,” Johnson added. Herein lies the hidden value of CRISPR-Cas9 and all further developments from it: The more we understand DNA and genomics, the better we will be able to fight diseases and other aspects of human life that cause harm, ultimately leading to a higher quality of life for all.

 

Junk DNA Shaping Your Face?

DNA_Double_Helix

So called “junk DNA” found in mice have been identified as major factors in the shaping of their faces. These findings are important because the same sequences are found in humans, and might be shaping ours. Junk DNA is named as such because it doesn’t code proteins, so it was originally thought to be “junk”. Scientists believe that these findings can help with research for congenital conditions such as cleft palates.

Geneticists have only, as of yet, been able to define a small number of the genes that influence human face shape, however there is a large variety of human faces. Axel Visel of the Lawrence Berkeley National Laboratory believes that this variation is caused by “distant acting enhancers“: non coding regions of DNA that can influence facial shape.

Visel discovered these findings by using a technique called optical projection tomography where he developed three dimensional models of mouse embryos and saw how gene expression varied the faces.

Discovering enhancers that affect face shape could be an important step in preventing or fixing conditions such as cleft palate syndrome. What do you think about this research or its implications?

Powered by WordPress & Theme by Anders Norén

Skip to toolbar