AP Biology class blog for discussing current research in Biology

Tag: MIT

Vaccines for Cancer?

We all know that Cancer is a genetic disease that really can’t be cured, but what if we could develop a Vaccine, like one for a virus, that would target the cells around it to target the cancer? That’s what Professor Darrell Irvine at MIT and his students are trying to accomplish. 

Professor Irvine is working on a vaccine that boosts T-Cells, which is a lymphocyte created in the Thymus along with Epithelial cells to boost immune response. The technique is called CAR-T Cell therapy, and it works by boosting anti-tumor T Cell populations, and using these enhanced populations to fight solid tumors. Before Dr. Irvine’s work, the therapy was unable to target any type of cancer that wasn’t Leukemia. The therapy had a difficult time working on solid tumors because they would attach the T cells to an antigen on the surface of B cells, but the immunosuppressive environment created by the tumor would kill the cells before they could reach the tumor.

But, the researchers at MIT decided to give a vaccine to the lymph nodes, which are host to an abundance of immune cells, instead. Dr. Irvine’s hypothesis was that attaching them to the lymph nodes rather than B cells would give them the proper priming cues to prevent them from dying when they reached the tumor, and he was right. To actually get the vaccine to the lymph nodes the researchers used a technique MIT had developed a few years prior where they attach the vaccine to a lipid tail, which would then bond with albumin, a protein found in the bloodstream, and would then get an uber straight to the lymph nodes. In research in mice, the vaccine has been shown to drastically increase T cell response, and two weeks after treatment and being given a booster vaccine the CAR-T cells made up nearly 65% of the T cells found in the mice. This boost in T cell population resulted in complete obliteration of breast, melanoma, and glioblastoma tumors in 60% of mice.

This success rate is unlike any other treatment for Cancer currently available, and since it is given in a vaccine, memory T cells will be able to detect tumors in the future and destroy them before they become dangerous, just like how regular vaccines work. Between the success rate and the fact that the vaccine will be able to destroy future tumors, there is nothing really like this around for Cancer treatment, and I’m very excited to see the possibilities this has. And the fact that something like a vaccine, which is only capable to treat viruses, can possibly help fight against a genetic disease is also very intriguing.

Human Brain Gene Implant Greatly Effects Mice

A study conducted at MIT tested the effect of human Foxp2 gene on mice and observed their ability to navigate through a maze. Foxp2 is found in both mice and humans, but the human form of the gene is related to  learning and language but it has been hypothesized by neuroscientist Ann Graybiel of MIT’s McGovern Institute for Brain Research that perhaps the human gene is related to sub-conscious actions based on environmental cues.

The maze lead to a pile of food, and throughout the maze the scientists placed visual and sensory cues that lead to the end of the maze and to the food. At the end of the study, the results showed that the genetically modified mice would complete the maze 3 days faster than the wild, control mice when visual and sensory cues were both involved.

The significance of the study is the potential connection between specialized learning and the Foxp2 gene. Although the difference between learning how to run a maze and leaning how to speak is massive, tests like this one are the beginnings to analyzing the true significance of Foxp2.


Bacteria become ‘genomic tape recorders’, recording chemical exposures in their DNA


MIT Engineers have developed a way to create genomic tape recorders out of the Bacteria E. Coli. Timothy Lu, an engineering professor at the university describes the method by which they altered the bacterial DNA in order to allow it to store information. The researchers engineered the cells to produce a recombinase enzyme which can insert a certain sequence of Nucleotides into the genome. However, the trait is useful because the enzyme is activated by specific stimuli. In order to retrieve the information the researchers can either sequence the genome and look for the specific code or look for the trait expressed by the targeted gene by using antibiotics. This process will be useful in the future because of its ability to store long term biological memory. Also, this process transcends previous limitations of genome storage as it is now able to indiscriminately store data as opposed to previous methods that were only able to identify a specific stimulus.

Article Link:

Useful Links:

Image Link:

Powered by WordPress & Theme by Anders Norén

Skip to toolbar