Researchers in Lund have recently discovered an antitoxin mechanism that may be able to protect bacteria against virus attacks by neutralizing hundreds of toxins. Understanding this antitoxin mechanism, named the Panacea, could be the next step to the future success of phage therapy, a treatment for antibiotic resistant infections.

These toxin-antitoxin mechanisms are a kind of on-off switch in bacterial DNA genomes. They are found to attack bacteriophages to defend bacteria.This activation of toxins allows bacteria to “lockdown” and limit growth and spreading of a virus. In order for Phage therapy to be successful in the future, it is important to understand these mechanisms in great depth. The goal of Phage therapy is to use viruses to treat bacterial infections. A toxin dramatically inhibits bacterial growth and an adjacent gene encoding an antitoxin counteracts the toxic effect. Although toxin-antitoxin pairs have been associated with new toxins or antitoxins before, the ability of the Panacea is unprecedented.

Phage therapy

As research continues on toxin-antitoxin systems and phage therapy it is clear that what we know is just the tip of the iceberg. As bacteria increasingly become resistant to antibiotics, other approaches are needed to help eliminate infections. The next steps of this research is to continue deepening the understanding of the Panacea and finding toxin-antitoxin systems on a universal scale.

In AP biology class we learned about inhibitors. An inhibitor is something that slows down or prevents a particular reaction or process. A toxin inhibits bacteria from growing and reproducing so the antitoxin can act against the virus that has already spread.