BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: implant

ALS Patient Gets a New Chance for Communication

While many of us heard about the existence of ALS through the ice-bucket challenge two summers ago, the intricacies and details of the disease are not as well known. A diagnosis of A.L.S. (amyotrophic lateral sclerosis), or Lou Gehrig’s disease, is devastating for the patient and his/her family. As the disease progresses, the patient will slowly lose their ability to use their muscles, until eventually, they can no longer control their own body movements.

A patient with this disease often would have little hope for improvement. Recently, Hanneke De Bruijne, a doctor of internal medicine from the Netherlands who received a diagnosis of ALS in 2008, received just that: a glimmer of hope. In this article from the NY Times, Steph Yin explains the exciting technology giving this particular patient  a new way to communicate. With a brain-computer interface surgically implanted into her brain, she can utilize electrical signals to type out words on a computer screen in front of her. Incredible, right?

Taken by Dr. Frank Gaillard.

Taken by Dr. Frank Gaillard.

Nick Ramsey, one of the researchers and a professor of cognitive neuroscience, has deemed this tool a “remote control in the brain.” Using the system, De Bruijne was able to type two to three words a minute, allowing her to use it in her daily life with remarkable success.

What makes the system so ingenious is that while De Bruijne suffers from locked-in syndrome as a result of her ALS diagnosis, her brain still fires electrical signals when she feels the desire to move. The brain implant computer system capitalizes on this, allowing her to spell out her desires with a “brain click” (thinking about the hand gesture that would click that button).

While there are risks with this surgery, like any invasive procedure, the development of this new software brings hope for many ALS patients who may suffer from even more extreme locked-in syndrome, without even the ability to move their eyes. Utilizing the brain signals that still function fully allows a patient to retain control over some aspect of their life and will hopefully be able to bring light to other patients as this approach is tested further.

Other relevant articles:

The ALSA organization

2014 breakthrough for ALS

2016 Groundbreaking study signals news hope for ALS Patients

The Ability to Control Genes with Your Thoughts

A research group led by Martin Fussenegger, a professor of Biotechnology and Bioengineering at the Swiss Federal Institute of Technology, has developed a method by which brainwaves control the creation of proteins from genes. The technology wirelessly transfers brainwaves to a network of genes that allows the human’s thoughts to control the protein synthesis of the genes. The system uses a uses an electroencephalogram (EEG) headset, which records and transmits a human’s brainwaves and sets it to the implant in the gene culture.

A successful experiment of the system included humans controlling gene implants in mice. When activated by brainwaves, the gene implant culture would light up by an installed LED light. The researches used the human protein SEAP as the protein that would be generated in the culture and diffused into the blood stream of the mice. The humans were categorized by their states of mind: “bio-feedback, meditation and concentration”. The concentrating group caused an average release of SEAP. The meditation group released high concentrations of the protein. Finally, the bio-feedback group produced varying degrees of SEAP, as they were able to visually control the production of the protein as they could view the LED light turning on and off during the production process. The LED light emits infrared light, which is neither harmful to human nor mice cells. The system proved successful in its ability to translate brainwaves into gene control and protein production and its potential for harmless integration into the living tissue of humans.

The research group hopes that in the future a thought-controlled implant could help prevent neurological diseases by recognizing certain brainwaves at an early stage of the disease and translating the brainwaves into the production of proteins and other molecules that would work to counteract the disease.

Lights of ideas

Powered by WordPress & Theme by Anders Norén

Skip to toolbar