BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: #geneticengineering

Can we make Jurassic Park real?

CRISPR technology has already demonstrated its potential to revolutionize modern biology. Summarized, CRISPR is a gene editing technology. It has the ability to change the sequence of DNA in living cells, therefore changing their traits. However, the applications of CRISPR extend far beyond simple fun with gene editing. CRISPR can be used to modify the foods we eat, making them easier to grow and more resistant to harsh climate. CRISPR has even been theorized to have implications for treating human genetic diseases. However, how far does this technology go?

Dino Park

A group of scientests have been focusing on a much more radical side of CRISPR: they are attempting the revival of an extinct species. The Christmas Island Rat went extinct over 100 years ago in 1903. Thankfully, some DNA of the rat has been maintained, allowing scientists to sequence the genome. Through analysis, they have found that the Christmas island rat is very closely related to the brown rat. In fact, the genomes have a 95% similarity between them. This similarity begs the question, can we CRISPR a Brown Rat into a Christmas Island Rat?

Because of the highly similar genomes, scientists believe that they can use the gene editing technology in CRISPR to recreate the Christmas Island Rats from the brown rat. While they have not yet achieved their goals, they are confident in their ability to produce results. Although modifying a rat to bring back a close relative is a long way off from bringing back dinosaurs from nothing, this amazing experiment may pave the way for future scientists to make the movies real life. As science progresses, we may be able to transform more complex and distantly related species, we will just need to wait and see.

Robot Frogs??

Yes, you read that title right. A team at the University of Vermont has figured out how to make robot frogs. These life forms are only millimeters long and are neither a living organism or robot. Currently, they can move toward a target and heal themselves after being injured, but not much else. One of their creators, Joshua Bongard, referred to them as “Novel living machines” and also said, “They’re neither a traditional robot nor a known species of animal. It’s a new class of artifact: a living, programmable organism.” The new creature was designed on a supercomputer at the University of Vermont, but was actually assembled and tested by biologists at Tufts University.

The creators of this new form of life see many different opportunities for it to do good, like searching out radiation, or gathering microplastics from the oceans, or even clearing plaque from arteries. Genetically engineering organisms has always been a widespread thing, but this is the first ever time that something was genetically modified from the ground up. The supercomputer at the University of Vermont ran hundreds of algorithms to test the optimal design for the organism, it would take many types of cells and put them into a bunch of forms and body shapes. Until they were finally able to decide on the optimal body type, thanks to the help of this computer. After the shape was decided the scientists at Tufts then incubated each cell on its own then used tiny forceps and an electrode in order to merge the cells together. They were then assembled into a form never seen before in nature, they were able to move in coherent fashion, but struggled from getting up from their backs like a beetle or a newborn baby.

Personally, I think the biggest use for this technology is drug delivery throughout the body. Certain medicines for certain diseases that only affect a certain region of the body need to be delivered directly to the source, and taking it orally, or even through injection cannot get it there with the effectiveness that something like a frog carrying a certain treatment like a mailman could, which could mean a lot for medicine. These robots would also be the perfect messengers because they can rapidly heal themselves, since they are comprised of stem cells, if they were to be attacked by the immune system, and because after 7 days they can be programmed to stop working and become regular dead skin cells. So, in turn, they are both biodegradable and effective. Robot frogs are cool, but there is also a lot of uses for them, and a lot of ways this silly invention can help the world.

 

Powered by WordPress & Theme by Anders Norén

Skip to toolbar