BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: Gene (Page 2 of 2)

Human Brain Gene Implant Greatly Effects Mice

A study conducted at MIT tested the effect of human Foxp2 gene on mice and observed their ability to navigate through a maze. Foxp2 is found in both mice and humans, but the human form of the gene is related to  learning and language but it has been hypothesized by neuroscientist Ann Graybiel of MIT’s McGovern Institute for Brain Research that perhaps the human gene is related to sub-conscious actions based on environmental cues.

The maze lead to a pile of food, and throughout the maze the scientists placed visual and sensory cues that lead to the end of the maze and to the food. At the end of the study, the results showed that the genetically modified mice would complete the maze 3 days faster than the wild, control mice when visual and sensory cues were both involved.

The significance of the study is the potential connection between specialized learning and the Foxp2 gene. Although the difference between learning how to run a maze and leaning how to speak is massive, tests like this one are the beginnings to analyzing the true significance of Foxp2.

Mice

New Breast Cancer Gene Discovered

 

 

 

Pink_ribbon.svg

Today, one of the most talked about cancers is breast cancer. Breast cancer is defined as cancer that forms in the tissues of the breast. There are two types of breast cancer: ductal carcinoma, which is most common and begins in the lining of the milk ducts (thin tubes that carry milk from the lobules of the breast to the nipple) and lobular carcinoma, which begins in the lobules (milk glands) of the breast.

According to a new study done by the Wellcome Trust Sanger Institute and University of Cambridge, a gene has been identified to have a major association in aggressive subtypes of breast cancer. The research suggests that an overactive BCL11A gene causes the development of tripe-negative breast cancer.

The study was conducted in human cells and in mice. The study was important because one in five patients are affected by triple-negative breast cancer. From the conducted research, Dr. Walid Khaled discovered that by adding an active human BCL11A gene to a human or a mouse’s breast cells (in the lab) caused them to behave as cancer cells. Increasingly, Dr. Khaled concluded that “by increasing BCL11A activity we increase cancer-like behaviour; by reducing it, we reduce cancer-like behavior.”

This research and study is extremely important because from the results, the team was able to propose that BCL11A is a strong candidate for development of a possible targeted treatment. Typical treatments of breast cancer include radiation and chemotherapy as well as surgery. The most known surgeries are Lumpectomy/partial mastectomy (large portion of the breast is removed) and a full mastectomy (full removal of breasts)

I chose this article because I know many dear friends that have faced and survived the battle of breast cancer. I believe that spreading awareness and screening early is extremely important. In addition, I am very hopeful that new advances will be made so that others need not endure the excruciating fight of breast cancer.

 

Bacteria become ‘genomic tape recorders’, recording chemical exposures in their DNA

EscherichiaColi_NIAID

MIT Engineers have developed a way to create genomic tape recorders out of the Bacteria E. Coli. Timothy Lu, an engineering professor at the university describes the method by which they altered the bacterial DNA in order to allow it to store information. The researchers engineered the cells to produce a recombinase enzyme which can insert a certain sequence of Nucleotides into the genome. However, the trait is useful because the enzyme is activated by specific stimuli. In order to retrieve the information the researchers can either sequence the genome and look for the specific code or look for the trait expressed by the targeted gene by using antibiotics. This process will be useful in the future because of its ability to store long term biological memory. Also, this process transcends previous limitations of genome storage as it is now able to indiscriminately store data as opposed to previous methods that were only able to identify a specific stimulus.

Article Link:

http://www.sciencedaily.com/releases/2014/11/141113142006.htm

Useful Links:

http://en.wikipedia.org/wiki/Escherichia_coli

http://en.wikipedia.org/wiki/Whole_genome_sequencing

Image Link:

http://commons.wikimedia.org/wiki/File:EscherichiaColi_NIAID.jpg

Page 2 of 2

Powered by WordPress & Theme by Anders Norén

Skip to toolbar