There is a certain fungus that turns ants into zombies, but afterward, they explode. When ants are just walking by minding their own business they step on fungal spores. It attaches to the ant’s body and the fungal cell goes inside of the ant. The fungus feeds from within and increasingly multiples cells and it is called, Ophiocordyceps, mainly living in the tropics. The danger about this fungus is that the ant is unaware of this whole process, it goes about its daily life, searching for food and bringing back to its nest. However, the fungus takes up half of an ant’s body mass. It undergoes a parasitic relationship where the fungus benefits, while the ant is harmed.
Once the fungus is done feeding, the ant will feel a needle-like sensation. What is happening here is that the fungus is pushing on the ant’s muscle cells. And the cell signals also get sent to the ant’s brain, then the ant will climb upwards above its nest. Ophiocordyceps does something very weird where it allows the ants to move upwards to a leaf above ground and then the ant bites down, where it locks its jaw. Then it sends out “sticky threads that glue the corpse to the leaf.” The ant’s head then bursts open, called a “fruiting body”, where it looks like horns projecting from the ant’s heads and the horns disperse more of these fungal spores onto its nest below it leaving behind a trail of spores.
Hornlike antlers that come out of the ant’s head
There is still so much that is unknown about Ophiocordyceps because scientists don’t even know what kind of chemical gets into the ant’s brain causing it to climb. There are ants that age back to 48 million years old gripped onto leaves. Scientists thought there was one species that zombified ants but it turns out there are at least 28 different fungal species that attack other insects as well. Dr. Araújo drew out a family tree to see what was infected by Ophiocordyceps. It became known that all Ophiocordyceps species come from a common ancestor, first infecting beetles larvae, not hemipteran.
The beetles that are affected by the larvae live in eroding logs.
“They’re mostly solitary creatures, with a very different life history,” compared to ants, she said.
It can now be inferred that possibly millions of years ago when this was happening to beetles, ants picked up the fungus if they were living in the same logs. Thus a constant cycle and more spreading of fungal spores. Even though natural selection favored keeping the ant’s host healthy and away from parasites, Ophiocordyceps had to find a way to make the ant leave the nest, not far enough from its environment, but just in the right place to send out the spore to infect whatever other ants were living around it.
Because this behavior is so unordinary it is not possible that only one gene is responsible for all of this. They keep finding new species. Dr. Hughes and Dr. Araújo are still researching to find that there are hundreds of other species of Ophiocordyceps that are yet to be discovered.
alindvall
"Hypotheoni, I'm currently enrolled in a graduate education course, and we were required to ..."
namurthy
"Hi Blakelement! The first line of your post was very attention grabbing! It ..."
namurthy
"Hi Lukewarm! That stats included in your post were shocking! It's crazy to ..."
namurthy
"Hi Lobiotic! I really like how your post connected to people in your ..."
namurthy
"Hi ITSALIVE! This is a really informative post about the higher rate ..."