BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: designer babies

Unnatural Selection: The Future of The Future?

Imagine it’s Saturday night, you are snowed in until the morning and you need a way to pass the time. Like many people, you resort to Netflix. Upon browsing through the vast selection of horror, comedy, and romantic films, you decide you are in the mood for a documentary. Scrolling through the options, you stop at a title that grabs your attention: Unnatural Selection.

Since you are an AP Biology student, you immediately connect the words “Natural Selection” to the work of Charles Darwin, the study of genetics, and most importantly: evolution. In brief, natural selection is the survival and reproduction of the fittest, the idea that organisms with traits better suited to living in a specific environment will survive to reproduce offspring with similar traits. Those with unfavorable traits may not be able to reproduce, and therefore those traits are no longer passed down through that species. Natural selection is a mechanism for genetic diversity in evolution, and it is how species adapt to certain environments over many generations.

If genetic diversity enables natural selection, then what enables unnatural selection? Well, If natural selection eradicates unfavorable traits naturally, then unnatural selection essentially eradicates unfavorable traits or promotes favorable traits artificially.

The Netflix docuseries “Unnatural Selection” focuses on the emergence of a new gene-editing technology named CRISPR (an acronym for “Clustered regularly interspaced short palindromic repeats”). CRISPR is a revolutionary new method of DNA editing, which could help cure both patients with genetic diseases and patients who are at risk of inheriting unwanted genetic diseases. The two pioneers of this technology, Emmanuelle Charpentier and Jennifer Doudna, recently won Nobel Prizes in Chemistry for their work on CRISPR.

CRISPR illustration gif animation 1

Animation of CRISPR using guide RNA to identify where to cut the DNA, and cutting the DNA using the Cas9 enzyme

CRISPR works with the Cas9 enzyme to locate and cut a specific segment of DNA. Scientists first identify the sequence of the human genome, and locates a specific region that needs to be altered. Using that sequence, they design a guide RNA strand that will help the Cas9 enzyme, otherwise known as the “molecular scissors” to locate the specific gene, and then make precision cuts. With the affected region removed, scientists can now insert a correct sequence in its place.

Using the bacterial quirk that is CRISPR, scientists have essentially given anyone with a micropipette and an internet connection the power to manipulate the genetic code of any living thing.

Megan Molteni / WIRED

CRISPR is just the beginning of gene editing, introducing a new field of potential gene editing research and applications. But with great power comes great responsibility — and great controversy. Aside from the obvious concerns, people speculating the safety, research, and trials of this new treatment, CRISPR headlines are dominated by a hefty ethical dilemma. On one hand, treating a patient for sickle cell anemia will rid them of pain and suffering, and allows their offspring to enjoy a normal life as well. However, by eliminating the passing down of this trait, sickle cell anemia is slowly eliminated from the human gene pool. Rather than natural selection choosing the path of human evolution — we are. We are selecting which traits we deem “abnormal” and are removing them scientifically. Although CRISPR treatment is intended to help people enjoy normal lives and have equally as happy children, putting evolution into the hands of those evolving can result in more drastic effects in the future.

For our generation, CRISPR seems like a magical cure for genetic diseases. But for future generations, CRISPR could very well be seen as the source of many problems such as overpopulation, low genetic diversity, and future alterations such as “designer babies.” Humans have reached the point where we are capable of our future. Is CRISPR going to solve all of our problems, or put an end to the diverse human race as we know it? Comment how you feel down in the comments.

 

Crispr-Cas9 is the gateway to a new frontier in genetic engineering. Here’s The good and the bad.

For a number of years now, molecular biologists have been diving increasingly further into the field of genome editing. The latest development into the field is the emergence of CRISPR-Cas9. CRISPR-Cas9 has risen to prominence over other potential methods of genome editing due to its relatively simple construction and low cost. CRISPR-Cas9’s original primary and intended purpose was to help fix mutations within DNA, and with this it could theoretically help eradicate entire diseases. This application of CRISPR is wholly positive, however with the increasing prevalence of the technique other potential uses have been discovered, and some of these potential uses raise profound ethical questions.

One of the main concerns of people skeptical about CRISPR is their assertion that once the door to the wholesale genetic editing of offspring is open, there is no going back. This, on its own, is a reasonable concern. The ability to choose a child’s sex, eye color, hair color and skin complexion is very likely to be made available to by CRISPR in the coming years. CRISPR does not yet have the capability to influence more abstract elements of the genome, such as intelligence and athletic ability, but this may not be far off. There are legitimate concerns that this is a slippery slope towards a dystopian society similar to the one seen in the movie Gattaca, where society is stratified into two distinct classes: those who are genetically engineered and those who are not.

Another concern raised by some scientists is the overall safety of genetic editing. A potentially very hazardous negative result of CRISPR is the possibility of an “off target mutation.” An off target mutation is the result of CRISPR mutating something other than the intended part of the genome and it could have disastrous consequences. Now, many scientists believe that with further advancements in the field the likelihood of something like an off target mutation occurring could be reduced to almost zero. However, it is important to examine the risks of any new process, and the prospect of something like an off target mutation occurring is certainly noteworthy.

For more information click here.

CRISPR Cas9: A Pathway for Designer Babies?

Can embryo modification allow parents to “custom order a baby with Lin-Manuel Miranda’s imagination or Usain Bolt’s speed?”

https://www.pexels.com/photo/adorable-baby-baby-feet-beautiful-266011/

Within the past decade, there has been an explosion in the use of CRISPR-Cas9, a gene editing tool that allows scientists to edit parts of the genome by removing, adding, or altering sections of the DNA sequence, in science research. Yet the promising technology renews the ethical issues rooted in genetic engineering and brings up the question: of what practices and ideas could become a reality in the near future? What about designer babies– embryos that have been genetically modified to produce desirable traits, such as greater athletics or higher intelligence?

Read More

Powered by WordPress & Theme by Anders Norén

Skip to toolbar