I consider myself, like most people, to be extremely indecisive. I also do not do very well when I find myself in stressful last minute decision making scenarios. A study done proves that it has to do with science!! According to a study done at Johns Hopkins University, it has been concluded that last-minute decision making and changing your mind is a complicated neural process involving complex neural coordination and communication among multiple brain areas.

Photo Credit: Affen Ajlfe (www.modup.net/)

 

Using functional magnetic resonance imaging, or fMRI, (a technique that monitors brain activity in real time), the research group found that changing your mind about a decision requires ultrafast communication between specific zones of the prefrontal cortex and a region of your brain called the frontal eye field. The frontal eye field is involved in controlling eye movements and visual awareness. The study found that the longer a decision takes to make, the longer it is held in the brain, and therefore the harder it is to reverse. This means that we are less likely to change our minds about a decision we have thought long and hard about.

Kitty Xu, the leader of experiment says  “If we change our mind about pressing the gas pedal even a few milliseconds after the original “go” message has been sent to our muscles, we simply can’t stop.  If we change our minds within roughly 100 milliseconds of making a decision, we can successfully revise our plans. If we wait more than 200 milliseconds, however, we may be unable to make the desired change—”. This finding is used to explain why sometimes, with age, adults are more likely to fall. As we age, our neural communicators slow which contributes to a message not reaching our muscles, or elsewhere fast enough to change our behavior.

The study’s next goal was to identify the brain regions involved in canceling a decision entirely. Participants took part in a fMRI and were instructed to watch a screen and stare at a black dot when it appeared. After focusing on the black dot, a colored dot would appear. The addition of a new stimulus caused the participants to abandon the original directed plan. The researchers watched on the fMRI which parts of the brain lit up during the decision making step to disregard the directions and look at the new dot. They found the prefrontal cortex and the frontal eye fields were the most active brain regions.

Xu hopes that these insights on how difficult it is for the brain to quickly change original plans can eventually lead researchers to find a way to lead us, specifically seniors, to safer decision making!